
WRDC-TR-90-8007
Volume V
Part 9
Section .

AD-A252 529

INTEGRATED INFORMATION SUPPORT SYSTEM (IISS)
Volume V - Common Data Model Subsystem
Part 9 - Neutral Data Manipulation Language (NDML) Precompiler
Development Specification
Section 1 of 5

J. Althoff, M. Apicella

Control Data Corporation EL CTE
Integration Technology Services JU I01 2
2970 Presidential Drive
Fairborn, OH 45324-6209 A

September 1990

Final Report for Period 1 April 1987 - 31 December 1990

Approved for Public Release; Distribution is Unlimited

92-15135
MANUFACTURING TECHNOLOGY DIRECTORATE
WRIGHT RESEARCH AND DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6533

92 6 09) ()4

NOTICE

When Government drawings, specifications, or other data are used for any purpose other
than in connection with a definitely related Government procurement operation, the United
States Government thereby incurs no responsibility nor any obligation whatsoever, regardless
whether or not the government may have formulated, furnished, or in any way supplied the
said drawings, specifications, or other data. It should not, therefore, be construed or implied
by any person, persons, or organization that the Government is licensing or conveying any
rights or permission to manufacture, use, or market any patented invention that may in any way
be related thereto.

This technical report has been reviewed and is approved for publication.
Tisnfort i Servie to Ath NTI, t iii Teia

availabl, to the general public, lacluding foreign nations

DA DL. J S N, Prject Manager DTW f DATE

Wrfiht-Pat rs AFB, OH 45433-6533

FOR THE COMMANDER:

'BRCE A. RASMUSSEN, Chief DATE
WRDC/MTI
Wright-Patterson AFB, OH 45433-6533

If your address has changed, if you wish to be removed form our mailing list, or if the
addressee is no longer employed by your organization please notify WRDC/MTI, Wright-
Patterson Air Force Base, OH 45433-6533 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a specific document.

REPORT DOCUMENTATION PAGE FORNAPPRov
I OUB NO. 0704-0186

Public reporting burden for this collection of information is estimated to average 1 hour per response cluding the time for reviewing
instructions, searching existing data sources. gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including sugges-
tions for reducing this burden, to Washington Headquarters Services. Directorate for Information Operations and Reports, 1215 Jeffersor
Davis Highway. Suite 1204, Arlington. VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project
(0704-0188). Washington. DC 20503.
1. AGENCY USE ONLY (Leave Bank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

Septmb 1990 Final Technical Report
1Apr87 - 31Dec90

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
INTEGRATED INFORMATION SUPPORT SYSTEM (ISS)
Volume V - Common Data Model Subsystem Contract No.: F33600-87-C-0464
Part 9 -Neutral Data Manipulation Language (NDML) Precompiler Development Specification PE. 7801 IF
Section I of 5
6. AUTHOR(S) Proj. No.: 595600

Task No.: P95600
J. Althoff, M. Apicella WU: 20950607

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) & PERFORMING ORGANIZATION
Controld Data Corporation REPORT NUMBER
Integration Technology Services
2970 Presidential Drive DS 620341200
Fairn, OH 45324-6209

9. SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REP NUMBER

Manufacturing Technology Directorate (WRDC/MTl)
Wright-Patterson AFB. OH 45433-6533 WRDC-TR-90-8007, Vol. V. Part 9

Section 1 of 5

11. SUPPLEMENTARY NOTES

WRDC/MTI Project Priority 6203

12s. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for Public Release; Distribution is Unlimited.

13. ABSTRACT

This development Specification (DS) describes the functions, performance, environment, interfaces, and design requirements for the Neutral Data
Manipulation Language (NDML) Precompiler. The NDML Precompiler is a component of the Common Data Model Processor (CDMP) and it
is used to generate various programs (e.g., request processor or RP, RP drivers, CS-ES transformers, and local subroutine callers) tailored to satisfy
the NDML requests in a specific application program.

This report is divided into five (5) sections.

14. SUBJECT TERMS 15. NUMBER OF PAGES

885

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASS 19. SECURITY CLASS 20. LIMITATION ABSTRACT
OF REPORT OF THIS PAGE. OF ABSTRACT

SAR SAR SAR SAR

Standard Form 290 (Rev 2-69)
Prescibed by ANSi Std Z239-18
298-102

DS 620341200
30 September 1990

FOREWORD

This technical report covers work performed under Air Force
Contract F33600-87-C-0464, DAPro Project. This contract is
sponsored by the Manufacturing Technology Directorate, Air Force
Systems Command, Wright-Patterson Air Force Base, Ohio. It was
administered under the technical direction of Mr. Bruce A.
Rasmussen, Branch Chief, Integration Technology Division,
Manufacturing Technology Directorate, through Mr. David L. Judson,
Project Manager. The Prime Contractor was Integration Technology
Services, Software Programs Division, of the Control Data
Corporation, Dayton, Ohio, under the direction of Mr. W. A.
Osborne. The DAPro Project Manager for Control Data Corporation
was Mr. Jimmy P. Maxwell.

The DAPro project was created to continue the development, test,
and demonstration of the Integrated Information Support System
(IISS) . The IISS technology work comprises enhancements to IISS
software and the establishment and operation of IISS test bed
hardware and communications for developers and users.

The following list names the Control Data Corporation
subcontractors and their contributing activities:

SUBCONTRACTOR ROLE

Control Data Corporation Responsible for the overall Common
Data Model design development and
implementation, IISS integration and
test, and technology transfer of IISS.

D. Appleton Company Responsible for providing software
information services for the Common
Data Model and IDEFIX integration
methodology.

ONTEK Responsible for defining and testing a
representative integrated system base
in Artificial Intelligence techniques
to establish fitness for use.

Accesion For ---H41
NTIS CNA&l
D Ii TI '

By

4 I

iii- - - - -

LA 1K.I

DS 620341200
30 September 1990

Simpact Corporation Responsible for Communication
development.

Structural Dynamics Responsible for User Interfaces,
Research Corporation Virtual Terminal Interface,and Network

Transaction Manager design,
development, implementation, and
support.

Arizona State University Responsible for test bed operations
and support.

iv

DS 620341200
30 September 1990

TABLE OF CONTENTS

Page

SECTION 1. SCOPE................................... 1-1
1.1 Identification......................... 1-1
1.2 Functional Summary..................... 1-2

SECTION 2. DOCUMENTS...................2-1
2.1 Applicable Dcmns...........2-1
2.2 Terms and Conditions................... 2-1

SECTION 3. REQUIREMENTS.......................... 3-1
3.1 Computer Program Definition........... 3-1
3.1.1 System Capacities...................... 3-1
3.1.2 Interface Requirements................. 3-1
3.1.3 Design/Implementation Differences 3-1
3.2 Detailed Functional Requirements .. 3-2
3.3 Special Requirements................... 3-2
3.4 Human Performance...................... 3-2
3.5 Database Requirements.................. 3-2
3.6 Adaptation Requirements................ 3-2

SECTION 4. FUNCTION PREl - PARCEL AP............. 4-1
4.1 Input.....................4-1
4.2 Processing............................... 4-1
4.3 Output................................... 4-3

SECTION 5. FUNCTION PRE2 - PARSE PROCEDURE 5-1
5.1 Input 5-1
5.2 Processsing.............................. 5-2
5.3 Output................................... 5-2

SECTION 6. FUNCTION CDQCSTK........................ 6-1
6.1 Inputs................................... 6-1
6.2 CDM Requirements........................ 6-2
6.3 Internal Requirements................... 6-2
6.4 Processing............................... 6-4
6.5 Outputs.................................. 6-10

SECTION 7. FUNCTION PRE3 - PARSE NDML............. 7-1
7.1 Input................................... 7-1
7.2 Processing............................... 7-1
7.3 Output................................... 7-9
7.4 Internal Data Requirements............. 7-11

v

DS 620341200
30 September 1990

TABLE OF CONTENTS (Continued)

Page

SECTION 8. FUNCTION CDTRANS - TRANSLATE XOR AND
NOT OPERATORS........................... 8-1

8.1 Inputs.................................. 8-1
8.2 CDM Requirements........................ 8-2
8.3 Internal Requirements.................. 8-2
8.4 Processing.............................. 8-2
8.5 Outputs................................. 8-5

SECTION 9. FUNCTION PRE4 - TRANSFORM ES/CS.........9-1
9.1 Inputs................................... 9-1
9.2 Processing............................... 9-2
9.3 Outputs.................................. 9-23
9.4 Internal Data Requirements............. 9-24

SECTION 10. FUNCTION CDVJUV - VERIFY JOIN TO
TARGET USER VIEW........................ 10-1

10.1 Inputs................................... 10-1
10.2 CDM Requirements........................ 10-1
10.3 Internal Requirements................... 10-1
10.4 Processing............................... 10-1
10.5 Outputs.................................. 10-2

SECTION 11. FUNCTION CDVNV - VERIFY NUMERIC
VALUE.................................... 11-1

11.1 Inputs.................................. 11-1
11.2 CDM Requirements........................ 11-1
11.3 Internal Requirements.................. 11-1
11.4 Processing.............................. 11-1
11.5 Outputs................................. 11-2

SECTION 12. FUNCTION CDMQAL - BUILD ES/CS ACTION
LIST ENTRIES............................ 12-1

12.1 Inputs.................................. 12-1
12.2 CDM Requirements........................ 12-1
12.3 Internal Requirements.................. 12-1
12.4 Processing.............................. 12-1
12.5 Outputs................................. 12-4

SECTION 13. FUNCTION CDGTN - RETRIEVE TAG NAME . 13-1
13.1 Inputs................................... 13-1
13.2 CDM Requirements........................ 13-1
13.3 Internal Requirements................... 13-1
13.4 Processing............................... 13-1
13.5 Outputs.................................. 13-2

vi

DS 620341200
30 September 1990

TABLE OF CONTENTS (Continued)

Page

SECTION 14. FUNCTION CDPBL - POPULATE BOOLEAN LIST 14-1
14.1 Inputs 14-1
14.2 CDM Requirements 14-1
14.3 Internal Requirements 14-1
14.4 Processing 14-1
14.5 Output 14-2

SECTION 15. FUNCTION PRE5A - DECOMPOSE CS NDML ... 15-1
15.1 Inputs 15-2
15.2 Processing 15-3
15.3 Constraints 15-37
15.4 Outputs 15-38
15.5 Internal Data Requirements 15-45

SECTION 16. FUNCTION PRE6 - SELECT IS ACCESS PATH. 16-1
16.1 Inputs 16-3
16.2 Processings 16-3
16.3 Outputs 16-44

SECTION 17. FUNCTION PRE7 - TRANSFORM IS ACCESS
PATH/GENERIC DML 17-1

17.1 Inputs 17-1
17.2 Processing 17-1
17.3 Outputs 17-16
17.4 Internal Data Requirements 17-19

SECTION 18. FUNCTION PRE8 - GENERATE CS/ES
TRANSFORM 18-1

18.1 Inputs 18-1
18.2 CDM Requirements 18-2
18.3 Internal Requirements 18-2
18.4 Processing 18-3
18.5 Outputs 18-27

SECTION 19. FUNCTION PRE8C - GENERATE CS-SELECTOR
PROGRAM 19-1

19.1 Inputs 19-1
19.2 CDM Requirements 19-2
19.3 Internal Requirements 19-2
19.4 Processing 19-3
19.5 Outputs 19-8

vii

DS 620341200
30 September 11 90

TABLE OF CONTENTS (Continued)

Page

.- -J'LLON 20. FUNCTION PRE8D - GENERATE REI9F-R_2N-T1AL
INTEGRITY TEST AND KEY UNIQUENESS
PROGRAM................................. 20-1

20.1 Inputs.................................. 20-1
20.2 CDM Requirements.................
20.3 Internal Requirements 2-
20.4 Processing........................ 20-3
20.5 Outputs................................. 20-2

7S:IC 21.FUNCTION CDCE - GENERATE CS -0 ES
RUNTIME CODE.............................. 21-1

21.1 Inputs................................. , 21-1
21.2 CDM Requirements....................... 21-2
21.3 Internal Requirements..................21-2
21.4 Processing.......................... 21-3
21-5 Output............................

ON 22. FUNCTION PRE9.2. REQUEST PROC-ESJ&-R
GENERATOR SUPPORT FUNCTIONS...........22-2

?2.1 DCI Generate Conceptua1/Intern.-I
Transformation.................. 22-2

22.1.1 Inputs.............................. 22-2
22.1.2 CDM Requirements................. 22-2
22.1.3 Internal Requirements................. 22-3
22.1.4 Macro Generation........... 22-3
22.1.5 Processing....................... 22-3
22.1.6 Outputs...........................
22.2 CDCMD Retrieve Conceptual M,--*. 22-9
22-2.1 Inputs............................. 22-10
22.2.2 CDM Requirements........... . 22-10
22.2.3 Internal Requirements
22.2.4 Processing.................. 21
22.2.5 Outputs........................ 21
22.3 CDCWF Combine Generator Worl 22-11
22.3.1 Inputs........................... 22-1i
22.3.2 CDM Requirements................. 2 -ij
22.3.3 Internal Requirements......... '1

")- 4 Processing...................
22.3.2 Outputs.......................... 21

2..4 CDIC Generate Internal/Conccp,"l.c
Transformation..................... .. 2-1-i

;2.4.1 Inputs..........................-
22.4.', CDM Requirements............. 2-
22.4.3 Internal Requirements..........- 2-

viii

DS 620341200
30 September 1990

TABLE OF CONTENTS (Continued)

Paqe

22.4.4 Processing 22-13
22.4.5 Outputs 22-49
22.5 CDIMD Retrieve Internal Meta Data... 22-57
22.5.1 Inputs 22-57
22.5.2 CDM Requirements 22-57
22.5.3 Internal Requirements 22-57
22.5.4 Processing 22-57
22.5.5 Outputs 22-57
22.6 CDMSG Generate Conceptual Schema

Search Parameters 22-57
22.6.1 Inputs 22-57
22.6.2 CDM Requirements 22-58
22.6.3 Internal Requirements 22-58
22.6.4 Processing 22-58
22.6.5 Outputs 22-59
22.7 CDPIC Generate COBOL Picture Clause 22-59
22.7.1 Inputs 22-59
22.7.2 CDM Requirements 22-60
22.7.3 Internal Requirements 22-60
22.7.4 Processing 22-60
22.7.5 Output 22-60
22.8 CDPRM Generate Internal Schema

Search Parameters 22-60
22.8.1 Inputs 22-60
22.8.2 CDM Requirements 22-61
22.8.3 Internal Requirements 22-61
22.8.4 Processing 22-61
22.8.5 Outputs 22-62
22.9 CDQDE Generate Internal Schema

Retrieval Qualification Variables... 22-62
22.9.1 Inputs 22-62
22.9.2 CDM Requirements 22-62
22.9.3 Internal Requirements 22-62
22.9.4 Processing 22-62
22.9.5 Output 22-64
22.10 CDRDE Generate Internal Schema

Retrieval Data Fields 22-64
22.10.1 Inputs 22-64
22.10.2 CDM Requirements 22-64
22.10.3 Internal Requirements 22-64
22.10.4 Processing 22-64

ix

DS 620341200
30 September 1990

TABLE OF CONTENTS (Continued)

Page

22.10.5 outputs................................. 22-65
22.11 CDRFT Generate Conceptual Schema

Retrieval Data Fields.................. 22-65
22.11.1 Inputs.................................. 22-66
22.11.2 CDM Requirements....................... 22-66
22.11.3 Internal Requirements.................. 22-66
22.11.4 Processing.............................. 22-66
22.11.5 Outputs................................. 22-67
22.12 Macros Expander........................ 22-67
22.12.1 Inputs.................................. 22-67
22.12.2 CDM Requirements....................... 22-68
22.12.3 Internal Requirements.................. 22-68
22.12.4 Processing.............................. 22-68
22.12.5 Outputs................................. 22-68
22.13 Function CDCMPR4 Generate Complex

Mapping Algorithm...................... 22-69
22.13.1 Inputs....................22-69
22.13.2 CMRquirements....................... 22-69
22.13.3 Internal Requirements.................. 22-69
22.13.4 Processing.............................. 22-69
22.13.5 outputs................................. 22-69
22.14 Function CDGENRT Generate A Record

Structure............................... 22-70
22.14.1 Inputs.................................. 22-70
22.14.2 0DM Requirements....................... 22-70
22.14.3 Internal Requirements.................. 22-70
22.14.4 Processing.............................. 22-70
22.14.5 Outputs................................. 22-73
22.15 Function CDGENIE....................... 22-74
22.15.1 Inputs.................................. 22-74
22.15.2 0DM Requirements....................... 22-74
22.15.3 Internal Requirements.................. 22-74
22.15.4 Processing.............................. 22-74
22.15.5 Outputs................................. 22-76
22.16 CDGTV - Generate Tag Variable

Definitions............................ 22-76
22.16.1 Inputs....................22-76
22.16.2 0MRquirements..................... 22-76
22.16.3 Internal Requirements.................. 22-76
22.16.4 Processing.............................. 22-76
22.16.5 Outputs................................. 22-78
22.17 Function CDGDF - Generate Datafield

ind Indicator Variables................ 22-78
22.17.1 Inputs....................22-78
22.17.2 CMRquirements....................... 22-78

x

DS 620341200
30 September 1990

TABLE OF CONTENTS (Continued)

Page

22.17.3 Internal Requirements 22-78
22.17.4 Processing 22-78
22.17.5 Outputs 22-79
22.18 Function CDGNV - Generate

User-Defined NULL Variable Names ... 22-79
22.18.1 Inputs 22-80
22.18.2 CDM Requirements 22-80
).18.3 Internal Requirements 22-80

4_,18.4 Processing 22-80
22.18.5 Outputs 22-80
22.19 Function CDRPCIF - Generate COBOL

IF Statement for Conceptual
Schema 22-80

22.19.1 Inputs 22-81
22.19.2 CDM Requirements 22-81
22.19.3 Internal Requirements 22-81
22.19.4 Processing 22-81
22.19.5 Outputs 22-83
22.20 Function CDRPIIF - Generate COBOL

IF Statement for Internal Schema 22-83
22.20.1 Inputs 22-83
22.20.2 CDM Requirements 22-83
22.20.3 Internal Requirements 22-83
22.20.4 Processing 22-84
22.20.5 Outputs 22-86
22.21 Function CDRPUIF - Generate COBOL

IF Statement for Union
Discriminator for Specified Record
Types 22-86

22.21.1 Inputs 22-86
22.21.2 CDM Requirements 22-87
22.21.3 Internal Requirements 22-87
22.21.4 Processing 22-87
22.21.5 Outputs 22-88

xi

DS 620341200
30 September 1990

TABLE OF CONTENTS (Continued)

Paqe

SECTION 23 FUNCTION PRE9.2 - GENERATE SQL
REQUEST PROCESSOR 23-1

23.1 Inputs 23-1
23.2 CDM Requirements 23-4
23.3 Internal Requirements 23-4
23.4 Processing 23-6
23.5 Outputs 23-56

SECTION 24 FUNCTION PRE9.3 - GENERATE CODASYL
REQUEST PROCESSOR 24-1

24.1 Inputs 24-1
24.2 Processing 24-3
24.3 Output 24-33

SECTION 25 FUNCTION PRE9.4 GENERATE TOTAL
QUERY PROCESSOR 25-1

25.1 Inputs 25-1
25.2 Processing 25-3
25.3 Outputs 25-34
25.4 Internal Requirements 25-35
25.5 Constraints 25-36

SECTION 26 FUNCTION PRE9.5 GENERATE IMS REQUEST
PROCESSOR 26-1

26.1 Inputs 26-1
26.2 Internal Requirements 26-2
26.3 Constraints 26-3
26.4 Outputs 26-3
26.5 Processing 26-5

SECTION 27 FUNCTION PRE10 BUILD CALLS AND
MESSAGES 27-1

27.1 Inputs 27-1
27.2 CDM Requirements 27-3
27.3 Internal Requirements 27-3
27.4 Processing 27-3

SECTION 28 FUNCTION CDP1OA - GENERATE CODE TO
TRANSFORM EXTERNAL SCHEMA VALUES
TO CONCEPTUAL SCHEMA VALUES 28-1

28.1 Inputs 28-1
28.2 CDM Requirements 28-2
28.3 Internal Requirements 28-2

xii

DS 620341200
30 September 1990

TABLE OF CONTENTS (Continued)

Paqe

28.4 Processing 28-2
28.5 Outputs 28-12

SECTION 29 FUNCTION CDP108 GENERATE PRECOMPILER
TABLES INTO THE USERS APPLICATION
PROGRAM 29-1

29.1 Inputs 29-1
29.2 CDM Requirements 29-2
29.3 Internal Requirements 29-2
29.4 Processing 29-2
29.5 Outputs 29-4

SECTION 30 FUNCTION CDP1OC - GENERATE EXTERNAL
SCHEMA RESULTS INTO USER VARIABLES
OR STRUCTURES 30-1

30.1 Inputs 30-1
30.2 CDM Requirements 30-1
30.3 Internal Requirements 30-2
30.4 Processing 30-2
30.5 Outputs 30-4

SECTION 31 FUNCTION CDP1OE - PROCESS EXTERNAL
SCHEMA INSERT VALUE 31-1

31.1 Inputs 31-1
31.2 CDM Requirements 31-1
31.3 Internal Requirements 31-2
31.4 Processing 31-2
31.5 Outputs 31-4

SECTION 32 FUNCTION CDP1OF - GENERATE DATA
DEFINITIONS FOR RETRIEVED RESULTS ... 32-1

32.1 INPUTS 32-1
32.2 CDM Requirements 32-2
32.3 Internal Requirements 32-2
32.4 Processing 32-2
32.5 Outputs 32-5

SECTION 33 FUNCTION CDEC - GENERATE EXTERNAL/
CONCEPTUAL TRANSFORMATION 33-1

33.1 Inputs 33-1
33.2 CDM Requirements 33-3

xiii

DS 620341200
30 September 1990

TABLE OF CONTENTS (Continued)

Page

33.3 Internal Requirements 33-3
33.4 Processing 33-3
33.5 Outputs 33-26

SECTION 34 FUNCTION CDECWS - GENERATE DATA
DEFINITIONS FOR RUNTIME UPDATE/SEARCH
VALUES 34-1

34.1 Inputs 34-1
34.2 CDM Requirements 34-2
34.3 Internal Requirements 34-2
34.4 Processing 34-2
34.5 Outputs 34-9

SECTION 35 FUNCTION CDUEMV - GENERATE "MOVE"
STATEMENTS FOR RUNTIME UPDATE/SEARCH
VALUES 35-1

35.1 Inputs 35-1
35.2 CDM Requirements 35-2
35.3 Internal Requirements 35-2
35.4 Processing 35-2
35.5 Outputs 35-4

SECTION 36 FUNCTION CDPIOS - PERFORM QUERY
COMBINATION 36-1

36.1 Inputs 36-1
36.2 CDM Requirements 36-3
36.3 Internal Requirements 36-3
36.4 Processing 36-3
36.5 Outputs 36-8

SECTION 37 FUNCTION CDP1OT - GENERATE CODE TO
PERFORM FINAL MAPPING OF RESULTS FROM
QUERY COMBINATION COMMAND 37-1

37.1 Inputs 37-1
37.2 CDM Requirements 37-2
37.3 Internal Requirements 37-2
37.4 Processing 37-2
37.5 Outputs 37-12

xiv

DS 620341200
30 September 1990

TABLE OF CONTENTS (Continued)

Page

SECTION 38 FUNCTION PREll - BUILD SOURCE CODE ... 38-1
38.1 Inputs 38-1
38.2 Processing 38-1
38.3 Output 38-1

SECTION 39 FUNCTION PRE12 - CONTROL
PRECOMPILATIONS (MAIN ROUTINE) 39-1

39.1 Inputs 39-1
39.2 CDM Requirements 39-2
39.3 Internal Date Requirements 39-2
39.4 Processing 39-2
39.5 Outputs 39-6

SECTION 40 FUNCTION PRE13 - CONTROL CODE
GENERATION 40-1

40.1 Inputs 40-1
40.2 Processing 40-2
40.3 Outputs 40-7

SECTION 41 FUNCTION PRE14 - REQUEST PROCESSOR
DRIVER GENERATOR 41-1

41.1 Inputs 41-1
41.2 CDM Requirements 41-1
41.3 Processing 41-1
41.4 Outputs 41-5

SECTION 42 FUNCTION PRE16 - PRECOMPILER REMOTE
COMPILE AND LINK 42-1

42.1 Inputs 42-3
42.2 Internal Requirements 42-4
42.3 Constraints 42-4
42.4 Outputs 42-5
42.5 Processing 42-5

SECTION 43 QUALITY ASSURANCE PROVISION 43-1

SECTION 44 PREPARATION FOR DELIVERY 44-1

xv

LIST OF ILLUSTRATIONS

Figures Title Page

26-2 Relational Operators 26-13

xvi

DS 620341200
30 September 1990

LIST OF TABLES

Table Title Page

23-1 SQL Request Processor Macros 23-54

xvii

DS 620341200

30 September 1990

SECTION 1

SCOPE

1.1 Identification

This specification establishes the performance, development,
test, and qualification requirements of a collection of computer
programs identified as Configuration Item "Precompiler."

This CI constitutes one of the major subsystems of the
"Common Data Model Processor" (CDMP) which is described in the
System Design Specification (SDS) for the ICAM Integrated Support
System (IISS). The CDMP scope is based on a logical concept of
subsystem modules that interface with other external systems of
the IISS. The CDMP has been portrayed with three confi~uration
items: the Precompiler, the Distributed Request Supervisor, and
the Aggregator. The scope of the CDMP and its configuration items
is described in the following narrative.

Common Data Model Processor (CDMP)

Input to the CDMP consists of user transactions in the form
of neutral data manipulation language (NDML) commands embedded in
COBOL or FORTRAN host programs. NDML commands p1'rased as
stand-alone requests may be supported in future enhancements.

The Precompiler CI parses the application program source
code, identifying NDML commands. It applies external-schema-
to-conceptual-schema and conceptual-schema-to-internal-schema
transforms on the NDML command, thereby decomposing the NDML
command into single-database requests. These single-database
requests are each transformed into generic DML commands. Programs
are generated from the generic DML commands which can access the
specific databases to retrieve the data required to evaluate the
NDML command. These programs, referred to as Request Processors
(RP), are stored at the appropriate host machines. The NDML
commands in the application source program are replaced by
function calls which when executed, will activate the run-time
request evaluation processes associated with the particular NDML
command.

The Precompiler also generates a CS/ES Transformer program
which will take the final results of the request, stored in a file
as a table with conceptual schema structure, and convert the data
values into their external schema form.

Finally, the Precompiler generates a Join Query Graph andResult Field Table, which are used by the Distributed Request
Supervisor (DRS) during the run-time evaluation of the request.

The DRS CI is responsible for coordination of the run-time
activity associated with the evaluation of an NDML command. It is
activated by the application program, which sends it the names and
locations of the RPs to activate, along with run-time parameters
which are to be sent to the RPs. The DRS activates the RPs,
sending them the run-time parameters. The results of the RPs are
stored as files, in the form of conceptual schema relations, on

1-1

DS 620341200
30 September 1990

the host which executed the RP. Using the Join Query Graph,
transmission cost information, and data about intermediate
results, the DRS determines the optimal strategy for combining the
intermediate results of the NDML command. It issues the
appropriate file transfer requests, activates aggreqators to
perform unions and joins, and activates the appropriate CS/ES
Transformer program to transform the final results. Finally, the
DRS notifies the application program that the request is
completed, and sends it the name of the file which contains the
results of the request.

The Aggregator CI is activated by the DRS. An instance of
the Aggregator is executed for each join, each outer join, and
each union operation performed. It is passed information
describing the operation to be performed, and the file names
containing the operands of the operation. The DRS ensures that
these files already exist on the host which is executing the
particular Aggregator program. The Aggregator performs the
requested operation, storing the results in a file, whose name was
specified by the DRS and which is located on the host executing
the Aggregator.

The CDMP provides the application programmer with important
capabilities to:

1. Request database accesses in a non-procedural data
manipulation language (the NDML) that is independent of
the data manipulation language (DML) of any particular
Data Base Management System (DBMS),

2. Request database access using a DML that specifies
accesses to a set of related records rather than to
individual records, i.e., using a relational DML,

3. Request access to data that are distributed across
multiple databases with a single DML command, without
knowledge of data locations or distribution details.

Information about external schemas, the conceptual
schema, and internal schemas (including data locations)
are provided by CDMP access to the Common Data Model
(CDM) database. The CDM is a relational database of
metadata pertaining to IISS. It is described by the CDMl
information model using IDEFI.

1.2 Functional Summary

The overall objective of this CI is to generate compilable
code that will be activated at run-time to access distributed
databases and to perform required internal-to-conceptual-to-
external transforms. It also produces join query graphs that
control the management of run-time transaction processing by the
Distributed Request Supervisor CI. The Precompiler CI parses
application program source code, identifies NDML commands, applies
transformations from external schema form to conceptual schema
form, locates requested data, decomposes the commands to

1-2

DS 620341200
30 September 1990

appropriate single-database requests, applies transformations
[Bfrom conceptual schema form to internal schema forms, and
selects appropriate access paths through the identified databases.

Major functions to be described in this document for this CI
are:

Function PREI Parcel AP
Function PRE2 Parse Procedure Division
Function CDQCSTK Control Precompilation Functions
Function PRE3 Parse NDML
Function CDTRANS Translate "XOR" and "NOT"
Function PRE4 Transform ES/CS
Function PRE5 Decompose CS NDML
Function PRE5A Distributed Logic Evaluator
Function PRE6 Select IS Access Path
Function PRE7 Transform IS Access Path/Generic DML
Function PRE8 Generate CS/ES Transform
Function PRE8C Generate CS/CS Transform
Function PRE8D Generate Referential Integrity

CS/CS Transform
Function PRE9.1 Request Processor Support Routines
Function PRE9.2 Generate SQL Request Processor
Function PRE9.3 Generate CODASYL Request Processor
Function PRE9.4 Generate TOTAL Request Processor
Function PRE9.5 Generate IMS Request Processor
Function PRE1O Build Calls and Messages
Function PREII Build Source Code
Function PRE12 Control Precompilation
Function PRE13 Control Code Generation
Function PRE14 Generate Request Processor Driver
Function PRE15 Generate Local Subroutine Caller
Function PRE16 Remote Compile and Link

The specific requirements for these functions were identified
in the Test Bed System Development Specifications.

1-3

DS 620341200

30 September 1990

SECTION Z

DOCUMENTS

2.1 Applicable Documents

Related ICAM Documents included:

UM620341001 CDM Administrator's Manual

CCS620341000 CDM1 An IDEFI Model of the Common Data
Model

UM620341100 Neutral Data Definition Language (NDDL)

User's Guide

PRM620341200 Embedded NDML Programmer's Reference Manual

DS620341200 Development Specification for the IISS NDML
Precompiler Configuration Item

DS620341310 Developmeoit Specification for the IISS
Distributed Request Supervisor Confiquration
Item

DS620341320 Development Specification for the IISS

Aggregator Configuration Item

Other references include:

Cardenas, A.F. and Pirahesh M.H., "Database Communication in
a Heterogeneous Database Management System Network,"
Information Systems, Vol. 5, pp. 55-79, 1980.

Chamberlin, D.D., et. al., "Sequel 2: A Unified Approach to
Data Definition, Manipulation, and Control," IBM Journal of
Research and Development, Vol. 20, No. 6, November 1976, pp.
560-575.

Date, C.J., A Guide to DB2, Addison-Wesley Publ. Co., 1984.

General Electric Company, Test Bed System Development
Specification, November 9, 1982.

Katz, R.H. and Wong, E., "Decompiling CODASYL DML into
Relational Queries," ACM Transactions on Database Systems,
Vol. 7, No. 1, pp. 1-23, May 1982.

2.2 Terms and Conditions

The following acronyms are used in this document:

APL Attribute Pair List

AUC Attribute Use Class

CDMP Common Data Model Processor

2-1

DS 620341200
30 September 1990

CI Configuration Item

CS Conreptual Schema

DML Data Manipulation Language

DRS Distributed Request Supervisor
(previously SS: Stager/Scheduler)

ES External Schema

ICAM Integrated Computer Aided Manufacturing

IS Internal Schema

NDML Neutral Data Manipulation Language

RFT Result Field Table

RP Request Processor
(previously QP: Query Processor)

SDS System Design Specification

2-2

DS 620341200

30 September 1990

SECTION 3

REQUIREMENTS

3.1 Computer Program Definition

3.1.1 System Capacities

The software for this CI must operate within the available
capacity of the target host computer.

3.1.2 Interface Requirements

3.1.2.1 Interface Blocks

This CI generates code that will be executed to provide
access to distributed Class II data. Its interfaces, illustrated
in Figure 3-1, include input in the form of application source
code containing Neutral Data Manipulation Language (NDML)
statements and output in the form of generated code (referred to
as Request Processors and CS/ES Transformers), modified
application source code, and information to guide run-time
scheduling of intermediate stages of request processing.

3.1.2.2 Detailed Interface Definition

The specific interface relationships of this CI to other CIs
and modules are described in detail for appropriate functions in
Section 3.2. The specific interface relationships between the
functions of this CI are also described in detail in Section 3.2.

3.1.3 Design/Implementation Differences

This section describes the significant differences between
the design of the NDML Precompiler that is documented in this
Development Specification and the software that has been produced
to implement the Precompiler. This section is not concerned with
minor differences, such as the exact structure of tables that are
passed from one module to another within the Precompiler.

The entire specification has been updated to reflect the
"AS-BUILT" design.

3-1

DS 620341200
30 September 1990

Application Source Code

V

PRECOMPILER

/\
/\

Modified / Join Query Source
Code /| I Graph/\

V V

COMPILER DISTRIBUTED
__________REQUEST

SUPERVISOR

V V
Request CS-ES
Processor Transform

Code Code

Figure 3-1. Precompiler Interfaces

3.2 Detailed Functional Requirements

The following sections, respectively, document each of the
Precompiler's major functions identified in Section 1.2.

3.3 Special Requirements

Principles of structured design and programming will be
adhered to.

3.4 Human Performance

Not applicable.

3.5 Database Requirements

The Precompiler programs require access to the CDM database.

3.6 Adaptation Requirements

The system will be implemented at the ICAM IISS Test Bed site
located at Arizona State University, Tempe, Arizona. The first
Precompiler processes will be implemented on the VAX VMS host.

3-2

DS 620341200

30 September 1990

SECTION 4

FUNCTION PREl - PARCEL AP

This function:

1. Extracts the Program ID from the application. This is
done so that NDML requests in the AP can be verified for
access permission.

2. Partitions an input AP into four parcels that will be
added to by other Precompiler components.

a. Identification parcel receives program description
statements from the COBOL Identification and
Environment Divisions.

b. File parcel receives COBOL file declarations and
layout statements for result files.

c. Working storage parcel receives layouts to hold
information used in message traffic, variables for
received file names, and run-time transformation
variables.

d. Remaining statements comprise the procedure parcel
which is handled by Parse Procedure (function PRE2).

4.1 Input

1. A flat file containing a single source program for the
user AP. This file is output from PRE12. If the user AP
consists of several source programs, they are placed in
this file one at a time.

4.2 Processing

1. Create the identification parcel.

Begin copying all statements from the beginning of the
source program into the identification parcel.

Search for the PROGRAM-ID statement. In addition to
copying it into the identification parcel, copy it into
the PROGRAM-ID parameter so it can be returned to PRE12.

Search for any of the following statements to signal the
end of the identification parcel and the beginning of the
file parcel:

INPUT-OUTPUT SECTION
IO-CONTROL
DATA DIVISION

1.1 If INPUT-OUTPUT SECTION is found, continue copying
into the identification parcel while searching for
either of the other two statements. When either one
is found, stop copying into the identification parcel

4-1

DS 620341200
30 September 1990

and proceed to Step 2. The IO-CONTROL or DATA
DIVISION statement becomes the first in the file
parcel.

1.2 If either I0-CONTROL or DATA DIVISION is found, stop
copying into the identification parcel. Since an
INPUT-OUTPUT SECTION statement was not found,
generate one and a FILE-CONTROL statement, and place
both in the identification parcel. Then proceed to
Step 2. The IO-CONTROL or DATA DIVISION statement
becomes the first in the file parcel.

2. Create the file parcel

Begin copying all statements from either the IO-CONTROL
or DATA DIVISION statement into the file parcel.

Search for any of the following statements to signal the
end of the file parcel and the beginning of the
working-storage parcel:

FILE SECTION
WORKING-STORAGE SECTION
LINKAGE SECTION
PROCEDURE DIVISION

2.1 If FILE SECTION is found, continue copying into the
file parcel while searching for any of the other
three statements.

2.1.1 If WrRKING-STORArE SECTION is found, stop
copying into the file parcel and proceed to
Step 3. rhe WORKING-STORAGE SECTION
statement becomes the first in the
workiag-storqe parcel.

2.1.2 If either LINKAGE SECTION or PROCEDURE
DIVISION is found, stop copying into the
file parcel. Since a WORKING-STORAGE
SECTION was not found, generate one and
place it as the only statement in the
working-storage parcel. Then proceed to
Step 4. The LINKAGE SECTION or PROCEDURE
DIVISION statement becomes the first in the
procedure parcel.

2.2 If WORKING-STORAGE SECTION, LINKAGE SECTION, or
PROCEDURE DIVISION is found, stop copying into the
file parcel. Since a FILE SECTION statement was
not found, generate one and place it in the file
parcel. Then continue processing depending on the
following:

2.2.1 If WORKING-STORAGE SECTION was found,
proceed to Step 3. The WORKING STORAGE
SECTION statement becomes the first in the
working-storage parcel.

4-2

DS 620341200
30 September 1990

2.2.2 If either LINKAGE SECTION or PROCEDURE
DIVISION was found, generate a
WORKING-STORAGE SECTION statement, since one
was not found, and place it as the only
statement in the working-storage parcel.
Then proceed to Step 4. The LINKAGE SECTION
or PROCEDURE DIVISION statement becomes the
first in the procedure parcel.

3. Create the working-storage parcel.

Begin copying all statements from the WORKING-STORAGE
SECTION statement into the working-storage parcel.

Search for either of the following statements to signal
the end of the working-storage parcel and the beginning
of the procedure parcel:

LINKAGE SECTION
PROCEDURE DIVISION

When either is found, stop copying to the
working-storage parcel and proceed to Step 4. The
LINKAGE SECTION or PROCEDURE DIVISION statement becomes
the first in the procedure parcel.

4. Create the procedure parcel.

Copy the LINKAGE SECTION or PROCEDURE DIVISION
statement into the procedure parcel. Then return to
PRE12; the remainder of the source program will be
processed in PRE2.

4.3 Output

1. Identification parcel, which is a flat file containing
all the statements from the beginning of the source
program until either the IO-CONTROL or DATA DIVISION
statement, whichever comes first.

2. File Parcel, which is a flat file containing all the
source statements from either the IO-CONTROL or DATA
DIVISION statement, whichever comes first, until either
the FILE SECTION, WORKING-STORAGE SECTION, LINKAGE
SECTION, or PROCEDURE DIVISION statement, whichever
comes first.

3. Working-storage parcel, which is a flat file containing
all the source statements from the WORKING-STORAGE
SECTION statement until either the LINKAGE SECTION or
PROCEDURE DIVISION statement, whichever comes first.

4. Procedure parcel, which is a flat file containing only
the LINKAGE SECTION or PROCEDURE DIVISION statement,
whichever comes first.

5. PROGRAM-ID, which is a parameter for returning the
identification of the source program to PRE12.

4-3

DS 620341200
30 September 1990

SECTION 5

FUNCTION PRE2 - PARSE PROCEDURE DIVISION

This function:

1. Appends source code to the procedure division parcel.

2. Extracts NDML clauses from the application source to
send to the NDML parser.

The possible NDML commands and associated clauses are:

Command Clause

SELECT SELECT
FROM (only with SELECT)
WHERE
ORDER BY

INSERT INSERT
VALUES

MODIFY MODIFY
USING
SET
WHERE

DELETE DELETE
USING
WHERE

BEGIN BEGIN

COMMIT COMMIT

ROLLBACK ROLLBACK

UNDO UNDO

3. Identifies the end of an NDML command and suspends
operations until all other Precompiler activity on the
command completes.

5.1 Input

1. Procedure Division of source program, which PRE1 began
dividing into parcels.

2. The following tables, lists, and variables which PRE2
only receives from certain Precompiler modules and
passes on to others:

NDML-COUNTER from PRE12 to PRE4
CODE-GENERATOR-TABLE from PRE12 to PRE13

5-1

DS 620341200
30 September 1990

5.2 Processing

1. Build the procedure parcel and locate NDML statements.

Begin copying all remaining statements in the source
program into the procedure parcel.

Search for NDML statements, i.e. those with '*#' in
columns 7:8. When one is found, in addition to copying
it into the procedure parcel, remove the '*#' and any
trailing blanks and process it as follows:

1.1 If the NDML statement begins a new NDML clause
and the NDML buffer is empty, place the NDML
statement at the beginning of the buffer.

1.2 If the NDML statement begins a new NDML clause
and the NDML buffer is not empty, invoke the NDML
Parser to parse the clause that is already in the
buffer.

When parsing is finished, if any errors were
found in the clause, discontinue the
precompilation; otherwise, clear the NDML buffer
and place the new NDML statement at the beginning
of it.

1.3 If the NDML statement is the continuation of an
NDML clause begun in a prior statement, append it
to what is already in the NDML buffer.

1.4 If the NDML statement contains ';' (the NDML
terminator) or '(' (the looping construct
initiator), invoke the NDML Parser to parse the
clause that is already in the NDML buffer.

When parsing is finished, if any errors were
found in the clause, discontinue the
precompilation; otherwise, invoke CDQCSTK to
begin translating the NDML request and generating
source code to satisfy it.

When CDQCSTK is finished aVain, clear the NDML
buffer and continue searching for NDML
statements.

5.3 Output

1. NDML requests, which are sent to NDML Parser to be
passed.

2. Procedure parcel, which is the flat file begun in PRE1
and to which the remainder of the source program has
been appended.

5-2

DS 620341200
30 September 1990

SECTION 6

FUNCTION CDQCSTK

This function will control the processing of all precompile
functions for an NDML command. It determines the type of NDML
statement, either single or query combination and then will
precompile a given statement or generate code that will perform
the query combination (UNION, DIFFERENCE or INTERSECT) of
sub-queries.

6.1 Inputs

1. Identification number of the NDML command

COMMAND-NO

2. Application Program parcel names

IDFILE-NAME
FDFILE-NAME
WORKFILE-NAME
PROCFILE-NAME

3. Application Program error file name

ERROR-FILE

4. Source language of the Application Program

SOURCE-LANGUAGE

5. Host Information about Application Program

PRECOMPILE-HOST
AP-TARGET-HOST

6. Code Generator Table

CODE-GENERATOR-TABLE

7. Last Case Number

LAST-CASE-NO

8. Logical Unit of Work Name

LUW-NAME

9. User Module Name

USER-MODULE-NAME

10. IOS Indicator

IOS-IND

6-1

DS 620341200
30 September 1990

6.2 CDM Requirements

None

6.3 Internal Requirements

1. External Schema representation of the data

THE EXTERNAL SCHEMA ACTION LIST

01 ES-ACTION-LIST.
03 ES-MAX PIC 99 VALUE 50.
03 ES-USED PIC 99 VALUE 0.
03 ES-NDML-NO PIC 999.
03 ES-ACTION PIC X.

88 ES-MODIFY-ACTION VALUE "M".
88 ES-DELETE-ACTION VALUE "D".
88 ES-INSERT-ACTION VALUE "I".
88 ES-SELECT-ACTION VALUE "S".
88 ES-SELECT-COMB VALUE "Q".
88 ES-BEGIN-ACTION VALUE "B".
88 ES-COMMIT-ACTION VALUE "C".
88 ES-ROLLBACK-ACTION VALUE "R".
88 ES-NEXT-CONT-ACTION VALUE "N".
88 ES-END-CURLEY-ACTION VALUE "E".
88 ES-EXIT-BREAK-ACTION VALUE "X".

03 ES-DISTINCT-FLAG PIC X.
88 ES-DISTINCT VALUE "Y".

03 ES-FILE-NAME PIC X(30).
03 ES-STRUCTURE PIC X(30).
03 ES-SEMI-CURLY-IND PIC X.
03 ES-LOCK PIC X.

88 ES-SHARED-LOCK VALUE "S".
88 ES-EXCLUSIVE-LOCK VALUE "X".
88 ES-NO-LOCK VALUE "N".

03 ES-TABLE-ROW OCCURS 50 TIMES INDEXED BY ES-INDEX.
05 ES-DELETE-FLAG PIC 9.

88 ES-DELETED VALUE 1.
05 ES-UV-ABBR PIC XX.
05 ES-DATA-ITEM PIC X(30).
05 ES-VE-USED PIC 99.
05 ES-VALUE-ENTRY OCCURS 5 TIMES.

07 ES-LOCAL-VARIABLE PIC X(64).
07 ES-SUBSCRIPT OCCURS 3 TIMES PIC XXX.
07 ES-VALUE PIC X(30).

05 ES-SORT-SEQUENCE PIC 99.
05 ES-SORT-DIRECTION PIC X.

88 UP-SORT VALUE "A".
88 DOWN-SORT VALUE "D".

* NOTE: A = ASCENDING
* D - DESCENDING

6-2

DS 620341200
30 September 1990

05 ES-PROJECT-FLAG PIC X.
88 TO-BE-PROJECTED VALUE "Y".

05 ES-FCTN-NAME PIC X(5).
88 APPLY-DISTINCT VALUE "Y".

05 ES-CS-PTR PIC 999.
05 ES-SOURCE PIC X.

88 ES-GENERATED VALUE "G".
88 ES-USER VALUE SPACE.

05 ES-META.
07 ES-UV-NO PIC 9(6).
07 ES-DI-NO PIC 9(6).
07 ES-TYPE PIC X.
07 ES-SIZE PIC 999.
07 ES-ND PIC 99.

THE EXTERNAL SCHEMA QUALIFY LIST

01 ES-QUALIFY-LIST.
03 ESQ-MAX PIC 99 VALUE 50.
03 ESQ-USED PIC 99 VALUE 0.
03 ES-QUAL-ITEM OCCURS 50 TIMES INDEXED BY ESQ-INDEX.

05 ESQ-OP PIC XX.
05 ESQ-LOCAL-VARIABLE PIC X(64).
05 ESQ-VALUE PIC X(30).
05 ESQ-SUBSCRIPT OCCURS 3 TIMES PIC XXX.
05 ESQ-BOOLEAN PIC X(7).
05 ESQ-CS-PTR PIC 999.
05 ESQ-FILLER.

07 ESQ-UV-ABBRL PIC XX.
07 ESQ-DATA-ITEML PIC (30).
07 ESQ-L-UV-NO PIC 9(6).
07 ESQ-L-DI-NO PIC 9(6).
07 ESQ-L-TYPE PIC X.
07 ESQ-L-SIZE PiC 999.
07 ESQ-L-NO PIC 99.
07 ESQ-UV-ABBRR PIC XX.
07 ESQ-DATA-ITEMR PIC X(30).
07 ESQ-R-UV-NO PIC 9(6).
07 ESQ-R-DI-NO PIC 9(6).
07 ESQ-R-TYPE PIC X.
07 ESQ-R-SIZE PiC 999.
07 ESQ-R-ND PIC 99.

2. Boolean operators, conditions and parenthesis from the
NDML WHERE clause.

BOOLEAN LIST

01 BOOLEAN-LIST.
03 BL-MAX PIC 999 VALUE 100.
03 BL-USED PIC 999.
03 BL-ENTRIES OCCURS 100 TIMES

INDEXED BY BL-INDEX.

05 BL-OP PIC XXX.
05 BL-ESQ-PTR PIC 9(4) COMP SYNC.
05 BL-CSQ-PTR PIC 9(4) COMP SYNC.
05 BL-CS-PTR PIC 9(4) COMP SYNC.

6-3

DS 620341200
30 September 1990

05 BL-EVAL-FLAG PIC 9.
88 BL-CANNOT-EVALUATE VALUE 0.
88 BL-CAN-EVALUATE VALUE 1 2 3 4.

3. User view information

USER VIEW ABBREVIATION LIST

01 UV-ABBR-LIST.
03 UV-MAX PIC 99 VALUE 25.
03 UV-USED PIC 99 VALUE 0.
03 UV-ABBREV-ENTRY OCCURS 25 TIMES

INDEXED BY UV-INDEX
05 UV-NAME PIC X(30).
05 UV-ABBR PIC XX.
05 UV-NO PIC 9(6).

4. NDML command nesting information

01 NDML-STACK.
03 NDML-COUNT PIC S9(4) COMP VALUE 0.
03 STACK-MAX PIC S9(4) VALUE 25.
03 STACK-USED PIC S9(4) COMP.
03 STACK-NO OCCURS 25 TIMES PIC S9(4) COMP.

5. NDML Query Combination command information

01 QUERY-RESULTS-STACK
03 QRS-MAX PIC 99 VALUE 25.
03 QRS-USED PIC 99 VALUE 0.
03 STACK-TOP PIC S9(4) VALUE 0.
03 FILE-ENTRY OCCURS 25 TIMES.

05 ES-QUERY-RESULTS-ID PIC X(4).
05 CS-QUERY-RESULTS-ID PIC X(6).

01 OPERATOR-STACK.
03 OPERATOR-MAX PIC 99 VALUE 25.
03 OPERATOR-USED PIC 99 VALUE 0.
03 OPERATOR-STACK-TOP PIC S9(4) VALUE 0.
03 OPERATOR-ENTRIES OCCURS 25 TIMES.

05 OPERATOR PIC X.
05 OPERATOR-NO PIC S9(4) COMP SYNC.

01 OPERAND-STACK.
03 OPERAND-MAX PIC 99 VALUE 25.
03 OPERAND-USED PIC 99 VALUE 0.
03 OPERAND-STACK-TOP PIC S9(4) VALUE 0.
03 OPERAND-ENTRIES OCCURS 25 TIMES.

05 OPERAND PIC S9(4) COMP.

6.4 Processing

1. Determine the type of NDML statement to process,
either single or query combination.

Check the contents of "Query Operator List" by calling
module "GETFIRSTSYMB" with the following parameters:

6-4

DS 620341200
30 September 1990

QUERY-OPERATOR-LIST
SYMBOL
ATTRI BUTE
RET-CODE

If no data exists on this list (MODULE-STATUS NOT =
0), then it is a single NDML statement. If data
exists on the list, it is a query combination command
and processing continues at step 2.

1.1 Populate the external schema precompiler tables
by executing function PRE3.

1.2 Translate any "XOR" or "NOT" operators in the
"WHERE" clause of the NDML statement by executing
function CDTRANS.

1.3 Start the precompilation process for a single
NDML statement by executing function PRE4.

1.4 Exit processing from routine CDQCSTK.

2. Determine the type of data in the "Query Operator
List". Check the contents of the variable
"ATTRIBUTE". If ATTRIBUTE > 0, then "SYMBOL"
contains an operator of the NDML query combination
command ("(", ")", "JOIN", "UNION", "DIFFERENCE").

2.1 If ATTRIBUTE > 0
store the value of "ATTRIBUTE" in the

OPERAND-STACK
continue processing at step 3.

2.2 If ATTRIBUTE < 0

2.2.1 Determine the precedence of the operator
according to the following chart

Symbol Precedence

4
INTERSECT 3
UNION, DIFFERENCE 2

1
* 5

2.2.2 Store the symbol and symbol precedence
in the OPERATOR-STACK (changing the
precedence of "4" to 0 before adding it to
the stack).

3. Precompile the Query Combination Command by processing all
remaining entries in the "QUERY-OPERATOR-LIST". Perform
steps 3.1 - 3.3 for each entry in the list. When no more
entries exist, continue processing at step 4.

3.1 Obtain the next "SYMBOL" and "ATTRIBUTE" from the
"QUERY-OPERATOR-LIST" by calling module
"GETNEXTSYMBOL" with the following parameters:

6-5

DS 620341200
30 September 1990

QUERY-OPERATOR-LIST
SYMBOL
ATTRI BUTE
RET-CODE

3.2 If ATTRIBUTE > 0
store the value of "ATTRIBUTE" in the

OPERAND-STACK
continue processing at step 3.1

3.3 Obtain the precedence of the operator as in step
2.2.1.

3.3.1 If the current operator is greater than one
on top of the stack, store the symbol and
symbol precedence in the OPERATOR-STACK as
in step 2.2.2. Continue processing at step
3.1.

3.3.2 If the current operator is less than one on
top of the stack, process all entries in
stack until stack is empty or current
operator is greater than or on top of the
stack.

3.3.2.1 If operand on top of OPERAND-STACK
is greater than zero then process
an inner SELECT.

Populate the external schema
precompiler tables by executing
function PRE3.

Translate any "XOR" or "NOT"
operators in the "WHERE"clause by
executing function CDTRANS.

Start precompilation process for
an inner SELECT by executing
function PRE4.

Save the ES-ACTION-LIST and
CS-ACTION-LIST in temporary list
for use during processing of the
outer SELECT.

Store the ES-NDML-NO and
CS-NDML-NO for this inner SELECT
in the QUERY-RESULTS-STACK.

3.3.2.2 Process the next inner SELECT.
Perform step 3.3.2.1.

3.3.2.3 Operate on the two previous inner
SELECTS.

Pop the top two entries in the
QUERY-RESULTS-STACK.

6-6

DS 620341200
30 September 1990

Generate code into the user's
application to process the query
operator by executing function
CDPIOS.

Store the identifier of the
results in the
QUERY-RESULTS-STACK.

Store intermediate results
indicated by a negative value in
the OPERAND-STACK.

3.2.3 If the current operator is "(" remove it
from the opeator stack.

3.2.4 If the current operator does not equal an
")", add it to the OPERATOR-STACK.

4. Process all remaining entries in the OPERAND-STACK by
executing steps 3.3.2.1 - 3.3.2.3.

5. Generate code onto the user's application program to
process the outer (mapping) SELECT of the query
combination command.

5.1 Popr' -e the external schema precompiler tables by
executing function PRE3.

5.2 Generate code to perform the final mapping of
results from Query Combination command by executing
function CDPIOT.

6. Set the function status for CDQCSTK and exit processing.

6.5 Outputs

1. Function status indicating if any errors occurred

MODULE-STATUS PIC X(5)

6-7

DS 620341200

3.1 Obtain the next "SYMBOL" and "ATTRIBUTE" from the
"QUERY-OPERATOR-LIST" by calling module
"GETNEXTSYMBOL" with the following parameters:

QUERY-OPERATOR-LIST
SYMBOL
ATTRIBUTE
RET-CODE

3.2 If ATTRIBUTE > 0
store the value of "ATTRIBUTE" in the

OPERAND-STACK
continue processing at step 3.1

3.3 Obtain the precedence of the operator as in step
2.2.1.

3.3.1 If the current operator is greater than one
on top of the stack, store the symbol and
symbol precedence in the OPERATOR-STACK as
in step 2.2.2. Continue processing at step
3.1.

3.3.2 If the current operator is less than one on
top of the stack, process all entries in
stack until stack is empty or current
operator is greater than or on top of the
stack.

3.3.2.1 If operand on top of OPERAND-STACK
is greater than zero then process
an inner SELECT.

Populate the external schema
precompiler tables by executing
function PRE3.

Translate any "XOR" or "NOT"
operators in the "WHERE"clause by
executing function CDTRANS.

Start precompilation process for
an inner SELECT by executing
function PRE4.

6-8

DS 620341200

Save the ES-ACTION-LIST and
CS-ACTION-LIST in temporary list
for use during processing of the
outer SELECT.

Store the ES-NDML-NO and
CS-NDML-NO for this inner SELECT
in the QUERY-RESULTS-STACK.

3.3.2.2 Process the next inner SELECT.
Perform step 3.3.2.1.

3.3.2.3 Operate on the two previous inner
SELECTS.

Pop the top two entries in the
QUERY-RESULTS-STACK.

Generate code into the user's
application to process the query
operator by executing function
CDP1OS.

Store the identifier of the
results in the
QUERY-RESULTS-STACK.

Store intermediate results
indicated by a negative value in
the OPERAND-STACK.

3.2.3 If the current operator is "(" remove it
from the opeator stack.

3.2.4 If the current operator does not equal an
")", add it to the OPERATOR-STACK.

4. Process all remaining entries in the OPERAND-STACK by
executing steps 3.3.2.1 - 3.3.2.3.

5. Generate code onto the user's application program to
process the outer (mapping) SELECT of the query
combination command.

6-9

DS 620341200

5.1 Populate the external schema precompiler tables by
executing function PRE3.

5.2 Generate code to perform the final mapping of
results from Query Combination command by executing
function CDPlOT.

6. Set the function status for CDQCSTK and exit processing.

6.5 Outputs

1. Function status indicating if any errors occurred

MODULE-STATUS PIC X(5)

6-10

DS 620341200

30 September 1990

SECTION 7

FUNCTION PRE3 - PARSE NDML

This function populates the external schema data structures

from the tokenized items of the NDML clauses.

7.1 Input

1. A complete NDML text clause.

7.2 Processing

For SELECT and ORDER BY clauses the ES-ACTION-LIST is
filled in as follows:

ES-NDML-NO = blank

ES-ACTION = ''

ES-DISTINCT-FLAG = 'Y' if SELECT DISTINCT is specified
= blank if no DISTINCT clause is

specified

ES-FILE-NAME = file-name if INTO file-name is
specified

= blank if INTO STRUCTURE or no INTO
clause is specified

ES-STRUCTURE = variable-name if INTO STRUCTURE
:variable-name is specified

= blank if INTO file-name or no INTO
clause is specified

ES-LOCK = 'S' if WITH SHARED LOCK is specified
= 'X' if WITH EXCLUSIVE LOCK is

specified
= 'N' if WITH NO LOCK or no LOCK clause

is specified

Note: One ES-ACTION-ENTRY, consisting of all the
following, is filled in for each item in the SELECT
list or the ORDER BY list. If the same item is in
both lists, only one ES-ACTION-ENTRY is filled in.

ES-UV-ABBR = table-label if the item contains
table-label.column-name or table-
label.ALL.
generated table-label if the item
contains table-name.column-name,
table-name.ALL, or just column-name
or ALL

ES-DATA-ITEM = column-name or ALL

Note: Only the first ES-VALUE-ENTRY, consisting of the
following three fields, is filled in. All other ES-
VALUE-ENTRYs are left blank.

7-1

DS 620341200
30 September 1990

ES-LOCAL-VARIABLE(l) = variable-name if the SELECT item
contains :variable-name

= blank if the SELECT item does not
contain :variable-name or if the
item is not in the SELECT list

ES-SUBSCRIPT(1,j) = integer in position j of the
subscript-i st if the SELECT item
contains :variable-name
(subscript-list)

= blank if the subscript-list has
fewer than j integers or if the
SELECT item does not contain a
subscript-list or if the item is
not in the SELECT list

ES-VALUE(l) = blank

ES-SORT-SEQUENCE = a positive number indicating the
order of sorting, 1 being the most
significant sort key field, if the
item is in the ORDER BY list

= zero if the item is not in the
ORDER BY list or if no ORDER BY
clause is specified

ES-SORT-DIRECTION = 'A' if an ascending sort on the
ORDER BY item is specified

= 'D' if a descending sort on the
ORDER BY item is specified
blank if the item is not in the
ORDER BY list or if no ORDER BY
clause is specified

ES-PROJECT-FLAG - 'Y' if the item is in the SELECT
list

= blank if the item is in the ORDER
BY list but not in the SELECT list

ES-FCTN-NAME = func-name if the SELECT item
contains a func-name

= blank if the SELECT item does not
contain a func-name or if the item
is not in the SELECT list

ES-FCTN-DISTINCT - 'Y' if the SELECT item contains
DISTINCT

= blank if the SELECT item does not
contain DISTINCT or if the item is
not in the SELECT list

ES-UV-NO = blank

ES-DI-NO = blank

For INSERT clauses the ES-ACTION-LIST is filled in as
follows:

7-2

DS 620341200

30 September 1990

ES-NDML-NO - blank

ES-ACTION = 'II

ES-DISTINCT-FLAG = blank

ES-FILE-NAME - file-name if FROM file-name is
specified

= blank if FROM STRUCTURE or no
FROM clause is specified

ES-STRUCTURE - variable-name if FROM STRUCTURE
:variable-name is specified
blank if FROM file-name or no FROM
clause is specified.

ES-LOCK - blank

Note: One ES-ACTION-ENTRY, consisting of all the
following, is filled in for each item in the INSERT
list.

ES-UV-ABBR = same as for SELECT

ES-DATA-ITEM = same as for SELECT

Note: One ES-VALUE-ENTRY, consisting of all the next
three fields, is filled in for each value in the
VALUES list. The VALUES list may contain more than
one set or row of values, each enclosed in
parenthesis. In this case, one value from each set
is associated with each item in the INSERT list. If
the VALUES clause contains a FROM clause instead of
a list of values, all ES-VALUE-ENTRYs are left
blank.

ES-LOCAL-VARIABLE(i) = variable-name if the value for
this INSERT item in set i contains
:variable-name

- blank if the value for this INSERT
item in set i is a number or a
quoted-string

ES-SUBSCRIPT(i,j) = integer in position j of the
subscript-list if the value for
this INSERT item in set i is
:variable-name (sub-script-list)

= blank if the subscript-list has
fewer than j integers or if the
value for this INSERT item in set
i does not contain a subscript-
list

ES-VALUE(i) - number if the value for this
INSERT item in set i is a number

= string (without quotes) if the
value for this INSERT item in set
i is a quoted-string

7-3

DS 620341200
30 September 1990

- blank if the value for this INSERT
item in set i contains :variable-
name

ES-VE-USED = number of rows of insert values

ES-SORT-SEQUENCE = zero

ES-SORT-DIRECTION = blank

ES-PROJECT-FLAG = blank

ES-FCTN-NAME = blank

ES-FCTN-DISTINCT = blank

ES-UV-NO = blank

ES-DI-NO = blank

For MODIFY clauses the ES-ACTION-LIST is filled in as
follows:

ES-NDML-NO = blank

ES-ACTION = M'

ES-DISTINCT-FLAG = blank

ES-FILE-NAME = blank

ES-STRUCTURE = blank

ES-LOCK = blank

Note: One ES-ACTION-ENTRY, consisting of all the
following, is filled in for each item in the MODIFY
list.

ES-UV-ABBR = same as for SELECT.

ES-DATA-ITEM = same as for SELECT.

Note: Only the first ES-VALUE-ENTRY, consisting of the
following three fields, is filled in. All other ES-
VALUE-ENTRYs are left blank.

ES-LOCAL-VARIABLE(1) = variable-name if the MODIFY item
contains :variable-name

= blank if the MODIFY item contains
a number or a quoted-string

ES-SUBSCRIPT(l,j) = integer in position j of the
subscript-list if the MODIFY item
contains :variable-name
(subscript-list)

= blank if the subscript-list has

7-4

DS 620341200
30 September 1990

fewer than j integers or if the
MODIFY item does not contain a
subscript-list

ES-VALUE(1) = number if the MODIFY item contains
a number

= string (without quotes) if the
MODIFY item contains a quoted-
string

- blank if the MODIFY item contains
:variable-name

ES-SORT-SEQUENCE = zero

ES-SORT-DIRECTION = blank

ES-PROJECT-FLAG = blank

ES-FCTN-NAME = blank

ES-FCTN-DISTINCT = blank

ES-UV-NO = blank

ES-DI-NO - blank

For DELETE clauses the ES-ACTION-LIST is filled in as
follows:

ES-NDML-NO - blank

ES-ACTION ='D

ES-DISTINCT-FLAG = blank

ES-FILE-NAME = blank

ES-STRUCTURE = blank

ES-LOCK = blank

Note: One ES-ACTION-ENTRY, consisting of all the
following, is filled in. All other ES-ACTION-ENTRYs
are left blank.

ES-UV-ABBR = same as for SELECT

ES-DATA-ITEM = blank

ES-LOCAL-VARIABLE = blank

ES-SUBSCRIPT = blank

ES-VALUE = blank

ES-SORT-SEQUENCE = zero

ES-SORT-DIRECTION = blank

7-5

DS 620341200

30 September 1990

ES-PROJECT-FLAG = blank

ES-FCTN-NAME = blank

ES-FCTN-DISTINCT = blank

ES-UV-NO = blank

ES-DI-NO = blank

For BEGIN, COMMIT, ROLLBACK, and UNDO clauses only one
field in the ES-ACTION-LIST is filled in as follows; all others
are left blank.

ES-ACTION = 'B' for a BEGIN clause.
= 'C' for a COMMIT clause.
= 'R' for a ROLLBACK clause or for an UNDO

clause.

One UV-ABBR-ENTRY is filled in as follows for each table in
the FROM clause of a SELECT command, for each table in the USING
clause of a MODIFY command plus the table being modified, or for
each table in the USING clause of a DELETE command plus the
table from which rows are being deleted. If a table-label is
not specified for a table in an NDML command, the parser
generates one and records it in the appropriate ES-ACTION-
ENTRYs, UV-ABBR-ENTRYs, and ES-QUALIFY-ENTRYs. If ALL is
specified without a table-label or table-name in a SELECT list,
the parser checks that only one table is included in the FROM
clause of that SELECT command. If more than one is included,
the parser issues an error for that command.

UV-NAME = table-name.

UV-ABBR = table-label if one is specified for the table.
= generated table-label if a table-label is not

specified for the table.

UV-NO = blank.

One or more ES-QUALIFY-ENTRIES are filled in as follows for
each column-predicate or join-predicate in a WHERE clause. If a
column-predicate is in the form:

value operator column-spec

it is changed into the form:

column-spec operator value

with the operator changing as follows:

from < to >
from <= to >=
from > to <
from >= to <=

7-6

DS 620341200
30 September 1990

The - and I- operators are not changed. If WHERE ALL is
specified instead of column-predicates or join-predicates, all
ES-QUALIFY-ENTRYs are left blank.

If the "BETWEEN" operator is used in the WHERE clause, two
entries are added to the ES-QUALIFY-LIST using the following
translation logic:

column-spec BETWEEN valuel AND value2

becomes

column-spec > - valuel AND
column-spec < - value2

column-spec NOT BETWEEN valuel AND value2

becomes

column-spec < valuel OR
column-spec > value2

ESQ-UV-ABBRL = table-label if the left side of the
predicate is table-label.column-
name

= generated table-label if the left
side of the predicate is table-
name.column-name or just column-
name

ESQ-DATA-ITEML = column-name from the left side of

the predicate

ESQ-L-UV-NO = blank

ESQ-L-DI-NO = blank

ESQ-OP = operator from the predicate, if the
operator does not equal BEWTEEN, IS
NULL, IS NOT NULL

= "NN" if operator from the predicate
is IS NOT NULL
"NL" if operator from the predicate
is IS NULL

= operator from the BETWEEN
translation logic, if the operator
from the predicate is BETWEEN

ESQ-LOCAL-VARIABLE = variable-name if the right side of
the column-predicate contains
:variable-name

- blank if the right side of the
column-predicate is a number or a
quoted-string or if the predicate
is a join-predicate

7-7

DS 620341200
30 September 1990

ESQ-SUBSCRIPT(i) = integer in position i of the
subscript-list if the right side of
the column-predicate is :variable-
name (subscript-list)

= blank if the subscript-list has
fewer than i integers or if the
value on the right side of the
column-predicate does not contain a
subscript-list or if the predicate
is a join-predicate

ESQ-VALUE = number if the right side of the
column-predicate is a number

= string (without quotes) if the
right side of the column-predicate
is a quoted-string

= blank if the right side of the
column-predicate contains
:variable-name or if the predicate
is a join-predicate

ESQ-UV-ABBRR = table-label if the right side of
the join-predicate is table-
label.column-name

= generated table-label if the right
side of the join-predicate is
table-name.column-name or just
column-name

= blank if the predicate is a column-
predicate

ESQ-DATA-ITEMR = column-name from the right side of
the join-predicate

= blank if the predicate is a column-
predicate

ESQ-R-UV-NO = blank

ESQ-R-DI-NO = blank

ESQ-BOOLEAN = blank

One BOOLEAN-ENTRY is filled in as follows for each external
qualification criteria (all non-join criteria) which is in
following format:

column-spec operator value

BL-OP = "(", ")" "AND", "OR", "XOR", "NOT"
of the predicate

= blank, if BL-ESQ-PTR is filled in

BL-ESQ-PTR = entry in the ES-QUALIFY-LIST
containing the predicate

= blank, if BL-OP is filled in

7-8

DS 620341200
30 September 1990

BL-CSQ-PTR - blank

BL-CS-PTR - blank

When the NDML clause has been parsed, the ES-ACTION-LIST,

ES-QUALIFY-LIST, and UV-ABBR-LIST are returned to CDQCSTK.

Perform semantic checks on parsed NDML SELECT requests.

Every time PRE3 finishes parsing an entire SELECT request,
ensure that the following statements regarding statistics,
sorting, and the disposition of retrieval results are true:

A. Only one of the following is specified as the
disposition for the SELECT results

a file (ES-FILE-NAME not blank)
a program structure (ES-STRUTURE-NAME not blank)
program variables (ES-LOCAL-VARIABLE not blank)

B. If a program variable is specified for a column being
retrieved (ES-LOCAL-VARIABLE not blank and
(ES-PROJECT-FLAG = 'Y'), then one is specified for
every such column.

C. If a statistics function is specified for a column
(ES-FCTN-NAME not blank), then one is specified for
every column.

D. If a statistics function is specified for a column
(ES-FCTN-NAME not blank), then sorting is not specified
for that column (ES-SORT-SEQUENCE = 0).

E. If a statistics function is specified for a column
(ES-FCTN-NAME not blank), then SELECT DISTINCT is not
specified for that column (ES-DISTINCT-FLAG not 'Y').

Perform semantic checks on parsed NDML WHERE clause

A. Join criteria (column-spec operator ccolumn-spec) must
be ANDed in the WHERE clause

B. Join criteria may not be embedded inside parentheses
with non-join criteria

7.3 Output

Parsed lists containing clause tokens:

THE EXTERNAL SCHEMA ACTION LIST

01 ES-ACTION-LIST.
03 ES-MAX PIC 99 VALUE 50.
03 ES-USED PIC 99 VALUE 0.
03 ES-NDML-NO PIC 999.
03 ES-ACTION PIC X.

7-9

DS 620341200
30 September 1990

88 ES-MODIFY-ACTION VALUE "M".
88 ES-DELETE-ACTION VALUE "D".
88 ES-INSERT-ACTION VALUE "I".
88 ES-SELECT-ACTION VALUE "S".
88 ES-SELECT-COMB VALUE "Q".
88 ES-BEGIN-ACTION VALUE "B".
88 ES-COMMIT-ACTION VALUE "C".
88 ES-ROLLBACK-ACTION VALUE "R".
88 ES-NEXT-CONT-ACTION VALUE "N".
88 ES-END-CURLEY-ACTION VALUE "E".
88 ES-EXIT-BREAK-ACTION VALUE "X".

03 ES-DISTINCT-FLAG PIC X.
88 ES-DISTINCT VALUE "Y".

03 ES-FILE-NAME PIC X(30).
03 ES-STRUCTURE PIC X(30).
03 ES-SEMI-CURLY-IND PIC X.
03 ES-LOCK PIC X.

88 ES-SHARED-LOCK VALUE "S".
88 ES-EXCLUSIVE-LOCK VALUE "X".
88 ES-NO-LOCK VALUE "N".

03 ES-TABLE-ROW OCCURS 50 TIMES INDEXED BY ES-INDEX.
05 ES-DELETE-FLAG PIC 9.

88 ES-DELETED VALUE 1.
05 ES-UV-ABBR PIC XX.
05 ES-DATA-ITEM PIC X(30).
05 ES-VE-USED PIC 99.
05 ES-VALUE-ENTRY OCCURS 5 TIMES.

07 ES-LOCAL-VARIABLE PIC X(64).
07 ES-SUBSCRIPT OCCURS 3 TIMES PIC XXX.
07 ES-VALUE PIC X(30).

05 ES-SORT-SEQUENCE PIC 99.
05 ES-SORT-DIRECTION PIC X.

88 UP-SORT VALUE "A".
88 DOWN-SORT VALUE "D".

* NOTE: A = ASCENDING
* D = DESCENDING

05 ES-PROJECT-FLAG PIC X.
88 TO-BE-PROJECTED VALUE "Y".

05 ES-FCTN-NAME PIC X(5).
88 APPLY-DISTINCT VALUE "Y".

05 ES-CS-PTR PIC 999.
05 ES-SOURCE PIC X.

88 ES-GENERATED VALUE "G".
88 ES-USER VALUE SPACE.

05 ES-META.
07 ES-UV-NO PIC 9(6).
07 ES-DI-NO PIC 9(6).
07 ES-TYPE PIC X.
07 ES-SIZE PIC 999.
07 ES-ND PIC 99.

7-10

DS 620341200

30 September 1990

THE EXTERNAL SCHEMA QUALIFY LIST

01 ES-QUALIFY-LIST.
03 ESQ-NAX PIC 99 VALUE 50.
03 ESQ-USED PIC 99 VALUE 0.
03 ES-QUAL-ITEM OCCURS 50 TIMES INDEXED BY ESQ-INDEX.

05 ESQ-OP PIC XX.
05 ESQ-LOCAL-VARIABLE PIC X(64).
05 ESQ-VALWE PIC X(30).
05 ESQ-SUBSCRIPT OCCURS 3 TIMES PIC XXX.
05 ESQ-BOOLEAN PIC X(7).
05 ESQ-CS-PTR PIC 999.
05 ESQ-FILLER.

07 ESQ-UV-ABBRL PIC XX.
07 ESQ-DATA-ITEML PIC (30).
07 ESQ-L-UV-NO PIC 9(6).
07 ESQ-L-DI-NO PIC 9(6).
07 ESQ-L-TYPE PIC X.
07 ESQ-L-SIZE PIC 999.
07 ESQ-L-NO PIC 99.
07 ESQ-UV-ABBRR PIC XX.
07 ESQ-DATA-ITEMR PIC X(30).
07 ESQ-R-UV-NO PIC 9(6).
07 ESQ-R-DI-NO PIC 9(6).
07 ESQ-R-TYPE PIC X.
07 ESQ-R-SIZE PIC 999.
07 ESQ-R-ND PIC 99.

USER VIEW ABBREVIATION LIST

01 UV-ABBR-LIST.
03 UV-MAX PIC 99 VALUE 25.
03 UV-USED PIC 99 VALUE 0.
03 UV-ABBREV-ENTRY OCCURS 25 TIMES INDEXED BY

UV-INDEX.
05 UV-NAME PIC X(30).
05 UV-ABBR PIC XX.
05 UV-NO PIC 9(6).

01 BOOLEAN-LIST.
03 BL-MAX PIC 999 VALUE 100.
03 BL-USED PIC 999.
03 BL-ENTRIES OCCURS 100 TIMES INDEXED BY

EL-INDEX.
05 BL-OP PIC XXX.
05 BL-ESQ-PTR PIC 9(4) COMP SYNC.
05 BL-CSQ-PTR PIC 9(4) COMP SYNC.
05 BL-CS-PTR PIC 9(4) COMP SYNC.
05 BL-EVAL-FLAG PIC 9.

88 BL-CANNOT-EVALUATE VALUE 0.
88 BL-CAN-EVALUATE VALUE 1 2 3 4.

7.4 Internal Data Requirements

NONE

7-11

SECTION 8

FUNCTION CDTRANS - TRANSLATE EXCLUSIVE OR (XOR) AND NOT
OPERATORS.

This function will translate the "XOR" and "NOT" operators
in the WHERE clause of the NDML statement. It will update both
the ES-QUALIFY-LIST and BOOLEAN-LIST to reflect the translation
of "XOR" and "NOT" to all "AND" and "OR" operators.

The exclusive OR (XOR) operator will be translated as
follows:

X.A < 5 XOR X.B =12

will be translated to:

(X.A < 5 OR X.B = 12) AND (X.A >= 5 OR X.B != 12)

The NOT operator will be translated according to De
Morgan's Law; operators are reversed, AND becomes OR and OR
becomes AND.

8.1 Inputs

1. External schema representation of the WHERE clause.

THE EXTERNAL SCHEMA QUALIFY LIST

01 ES-QUALIFY-LIST.
03 ESQ-MAX PIC 99 VALUE 50.
03 ESQ-USED PIC 99 VALUE 0.
03 ES-QUAL-ITEM OCCURS 50 TIMES INDEXED BY ESQ-INDEX.

05 ESQ-OP PIC XX.
05 ESQ-LOCAL-VARIABLE PIC X(64).
05 ESQ-VALUE PIC X(30).
05 ESQ-SUBSCRIPT OCCURS 3 TIMES PIC XXX.
05 ESQ-BOOLEAN PIC X(7).
05 ESQ-CS-PTR PIC 999.
05 ESQ-FILLER.

07 ESQ-UV-ABBRL PIC XX.
07 ESQ-DATA-ITEML PIC (30).
07 ESQ-L-UV-NO PIC 9(6).
07 ESQ-L-DI-NO PIC 9(6).
07 ESQ-L-TYPE PIC X.
07 ESQ-L-SIZE PIC 999.
07 ESQ-L-NO PIC 99.
07 ESQ-UV-ABBRR PIC XX.
07 ESQ-DATA-ITEMR PIC X(30).
07 ESQ-R-UV-NO PIC 9(6).
07 ESQ-R-DI-NO PIC 9(6).
07 ESQ-R-TYPE PIC X.
07 ESQ-R-SIZE PIC 999.
07 ESQ-R-ND PIC 99.

8-1

01 BOOLEAN-LIST.
03 BL-MAX PIC 999 VALUE 100.
03 BL-USED PIC 999.
03 BL-ENTRIES OCCURS 100 TIMES INDEXED BY

BL-INDEX.
05 BL-OP PIC XXX.
05 BL-ESQ-PTR PIC 9(4) COMP SYNC.
05 BL-CSQ-PTR PIC 9(4) COMP SYNC.
05 BL-CS-PTR PIC 9(4) COMP SYNC.
05 BL-EVAL-FLAG PIC 9.

88 BL-CANNOT-EVALUATE VALUE 0.
88 BL-CAN-EVALUATE VALUE 1 2 3 4.

8.2 CDM Requirements

NONE

8.3 Internal Requirements

NONE

8.4 Processing

1. Initialize local variables

2. Translate all "XOR" entries in the BOOLEAN-LIST. When
all entries have been processed (BL-INDEX > BL-USED),
continue processing at step 3.

2.1 If BL-OP (BL-INDEX) NOT = "XOR", continue
processing at step 2 with the next BOOLEAN-LIST
entry. If BL-OP (BL-INDEX) = "XOR":

2.1.1 Position back to the beginning of the
expression on the left of the "XOR"1
operator and get the size of the left
expression. Save this position as the
beginning position of "XOR" expression.

2.1.1.1 Beginning of left expression can
be indicated by one of three
conditions:

1) Beginning of the Boolean list

2) If right parentheses are
found, then finding matching
left parentheses

3) First non-"NOT" Boolean
operator when RIGHT-PAREN-CNT
equals LEFT-PAREN-CNT

Note: Include all immediately
preceding NOTs when left
expression is found.

8-2

2.1.1.2 Size of left expression is equal
to the position of "XOR" minus
the beginning of left expression

2.1.2 Position forward to the end s£ t!;
expression to the right of "XQR" operator
and get the size of right expression.
Save the position as the end position of
"XOR" expression.

2.1.2.1 End of right expression can be
indicated by one of three
conditions:

1) End of Boolean list

2) If left parentheses are
found, then finding matching
right parentheses

3) First not-"NOT" Boolean
operator when LEFT-PAREN-CNT
equals RIGHT-PAREN-CNT

Note: Include all NOTs when
searching for end of right
expression

2.1.2.2 Size of right expression is equal
to the end of left expression
minus the position of "XOR".

2.1.3 Gap size = BL-MAX - BL-USED

2.1.4 Check if gap size >= expression size (left
+ right + 7). If not, signal BL-ENTRY
overflowed error, set the return status
and exit.

2.1.5 Open the gap in BL-ENTRY from the
beginning position of expression, i.e.
move all BL-ENTRYs starting with the
beginning position of expression to the
last (BL-USED) position to TEMP-BL-ENTRY.

2.1.6 Set and save the top position of gap =
beginning position of expression

2.1.7 Set the beginning and end position of the
"XOR" operator in TEMP-BL-ENTRY. Also set
TEMP-BL-ENTRY-MAX.

beginning = 1
end = previous end - previous
beginning + 1
TEMP-MAX = BL-USED - previous

beginning + 1

8-3

2.1.8 Put operator "(" to the top of gap;
increment the top of gap

2.1.9 Copy each entry of BL-ENTRY from beginning
position to end position of expression of
operator "XOR" to the top of gap.
Increment top of gap after each copy.

2.1.10 Put operator ")" to the top of gap;
increment the top of gap

2.1.11 Set the position of "XOR" operator = saved
top position of gap + size of left
expression + 1

2.1.12 Change operator "XOR" to "OR"

2.1.13 Put operator "AND" to the top of gap;
increment the top of gap

2.1.14 Put operator "NOT" to the top of gap;

increment the top of gap

2.1.15 Save the top position of gap

2.1.16 Put operator "(" to the top of gap;
increment the top of gap

2.1.17 Loop through each entry of BL-ENTRY from
beginning position to end position of
expression of operator "XOR" to gap

2.1.17.1 Copy each entry of
ES-QUALIFY-LIST pointed to by
BL-ESQ-PTR to the rear of
ES-QUALIFY-LIST, incrementing
ESQ-USED first.

2.1.17.2 Copy entry of BL-ENTRY to the
top of gap, increment top of
gap after each copy and reset
the BL-ESQ-PTR to the new entry
created at 2.1.17.1

2.1.18 Put operator ")" to the top of gap;
increment the top of gap

2.1.19 Set the position of "XOR" operator = saved
top position of gap + size of left
expression + 1

2.1.20 Change operator "XOR" to "AND"

2.1.21 Move TEMP-BL-ENTRY from end of expression
+ 1 to TEMP-MAX to top of gap. After each
move, increment the top of gap.

2.1.22 Update BL-USED = current top of gap - 1

8-4

2.1.23 Continue processing at step 2

3. Translate all "NOT" entries in the BOOLEAN-LIST. When
all entries have been processed, (BL-INDEX > BL-USED)
continue processing at step 4.

3.1 If BL-OP (BL-INDEX) NOT = "NOT" continue
processing at step 3 with the next BOOLEAN-LIST
entry

3.1.1 Delete "NOT" by removing it from the
BOOLEAN LIST

3.1.2 Convert "AND" to "OR" and "OR" to "AND"
from beginning to the end of the "NOT"
expression

3.1.3 Convert every operator in ES-QUALIFY-LIST
to the opposite operator, i.e. "=" becomes
"!=", ">" becomes "1>="I ... etc. from the
beginning to the end of the "NOT"
expression

3.1.4 Continue processing at step 4

4. Exit CDTRANS

8.5 Outputs

1. Updated external schema representation of the WHERE
clause with no "XOR" or "NOT" entries

ES-QUALIFY-LIST
BOOLEAN-LIST

8-5

DS 620341200
30 September 1990

SECTION 9

FUNCTION PRE4 - TRANSFORM ES/CS

The external-schema-to-conceptual-schema transformer
converts an NDML request expressed in external schema terms
into one or more NDML requests expressed in conceptual schema
terms.

The conversion involves translating each user view into
the corresponding entity classes and each data item into the
corresponding attribute use classes.

It also involves identifying the relational join
operations that are needed to construct each user view table
from the entity class tables and identifying the integrity
tests that will be employed with each NDML update request.
This implementation will not support derived data items.

9.1 Inputs

1. CDM Metadata

The entity classes needed are:

Alpha-Numeric Data Format = ANDF (E234)
Attribute Class Data = ACDD (E184)

Description
Attribute Use Class = AUC (E5)
AUC-DI Mapping = AUCDIM (E64)
Data Format = DF (E233)
Data Item = DI (E16)
EC-UV Join = ECUVJ (E79)
Inherited Attribute Class = IAC (E7)
Key Class = KC (E3)
Key Class Member = KCM (E6)
Numeric Data Format = NDF (E235)
Relation Class = RC (E4)
User View = UV (E15)

2. The NDML external schema request to be transformed

This is output from the parser function PRE3 and
includes:

ES-ACTION-LIST
UV-ABBR-LIST
ESQ-QUALIFY-LIST

3. NDML-COUNTER

This counter is used by PRE4 to create a unique case
number for each NDML command in the user AP. It is
supplied by the main function, which retrieved the
last used NDML-COUNTER from the CDM for the logical
unit of work being precomplied. PRE4 increments it

9-1

DS 620341200
30 September 1990

for each NDML command and returns it to CDQCSTK when
PRE4 ends. CDQCSTK does not change it during the
precompilation of a user AP.

4. Parcels 1 through 4

PARCEL1, PARCEL2, PARCEL3 AND PARCEL4 contain names of
files which contain the partitioned user module.

5. ERROR-FILE

The file to which error messages are generated.

6. MY-HOST

The host name upon whih CDPRE4 runs.

7. TARGET-HOST

The host upon which the user application will run.

8. SOURCE-LANGUAGE

Language in which the user application is written.

9. CODE-GENERATOR-TABLE

Information regarding precompiler generated code.

10. IOS-IND

Information regarding the presence or absence of an
INPUT OUTPUT section in the user application.

11. USER-MOD-ID

Name of the user's subroutine being precompiled, as
identified by PREl.

12. BOOLEAN-LIST

Information regarding column versus literal or
variable qualifications.

9.2 Processing

1. Fill in CURRENT-CS with the model number for the
current version of the conceptual schema.

2. For each UV-ABBR-ENTRY fill in UV-NO with VIEW-NO from
the UV (E15) entry that has VIEW-NAME = UV-NAME. If
no such UV entry is found, reject the NDML statement
(nonexistent user view). If DISTINCT IND from
USER VIEW is "Y" but the user has not-specified a
"disEinct" function, set the ESDISTINCT-FLAG to "Y".

9-2

DS 620341200
30 September 1990

3. If ES-ACTION = '', transform each ES-ACTION-ENTRY by
doing the following:

3.1 Fill in ES-UV-NO with UV-NO from the
UV-ABBR-ENTRY that has UV-ABBR = ES-UV-ABBR.

3.2 If ES-DATA-ITEM = 'ALL', find all the DI (E16)
entries that have VIEW-NO = ES-UV-NO, and fill in
a new ES-ACTION-ENTRY for each as follows:

ES-UV-ABBR = ES-UV-ABBR in the ES-ACTION-
ENTRY that contains 'ALL'

ES-DATA-ITEM = DI-NAME in the DI (E16)
entry

ES-PROJECT-FLAG ='Y

All other fields in the new ES-ACTION-ENTRYs are
left blank or zero. The existing entry
containing 'ALL' is replaced by the first
ES-DATA-ITEM. The remainder of Step 3 is done
for each ES-ACTION-ENTRY that is filled in.

3.3 Deposit external metadata for each external data
item into the current ES-TYPE, ES-SIZE, ES-ND,
and ES-DI-NO. If the data item does not exist,
reject the NDML statement (non-existent data
item).

3.4 If ES-FCTN-NAME = 'SUM', 'AVG', or 'MEAN' and
DT-CODE in the DI entry indicates a non-numeric
data type, reject the NDML statement (function
requires numeric data).

3.5 If ES-FCTN-NAME = 'MIN' or 'MAX' and
ES-FCTN-DISTINCT = 'Y', reset ES-FCTN-DISTINCT to
blank.

3.6 Verify that the data item is not derived and
extract the tag number mapped to by the current
data item.

3.7 This step deleted.

3.8 Extract conceptual metadata and entity class
number given the tag number.

3.9 This step was deleted. Its function is performed
by CDPRE2.

3.10 This step was deleted. The CE-WORK-LIST has been
dropped.

3.11 Fill in a CS-ACTION-ENTRY as follows:

CS-ECNO - EC-NO in the AUC entry
CS-AUC - AUC-NO in the AUC entry
CS-TYPE - type from 3.8
CS-SIZE - size from 3.8
CS-ND = ND from 3.8

9-3

DS 620341200
30 September 1990

CS-ES-PTR = ES-ACTION-LIST index
CS-LOCAL-VARIABLE = 'ES-A-ndml-index' where:

ndml = NDML-counter
index = ES-INDEX

CS-FCTN-NAME = ES-FCTN-NAME
CS-FCTN-DISTINCT = ES-FCTN-DISTINCT
CS-SOURCE = blank
CS-DELETE-FLAG = zero

3.12 This step was deleted.

4. If ES-ACTION = 'I', do the following:

4.1 Transform each ES-ACTION-ENTRY by doing the
following:

4.1.1 Fill in ES-UV-NO with UV-NO from the
UV-ABBR-ENTRY that has UV-ABBR -

ES-UV-ABBR. Same as Step 3.1.

4.1.1a Verify that the view is not mapped to
more than one entity. If so, reject the
NDML statement. (User view maps to
multiple entity classes.)

4.1.2 Populate external metadata and ES-DI-NO.

For each used ES-DATA-ITEM, extract
external metadata and data item number by
calling CDEMD with the following
parameters.

INPUTS

USER-VIEW-NO
DATA-ITEM-NAME
ERROR-FILE

OUTPUTS

DI-NO
ETYPE
ESIZE
E-ND
RET-STATUS

Populate the current ES-DI-NO with DI-NO,
the current ES-TYPE with ETYPE, the
current ES-SIZE with ESIZE and the
current ES-ND with E-ND.

4.1.3 For each ES-VALUE entry whose index is
less than or equal to ES-VE-USED
(ES-INDEX) which has the corresponding
ES-LOCAL-VARIABLE equal to spaces and the
corresponding ES-TYPE equal to I,F, N, P
or S call CDVNV to insure that the value
is numeric:

9-4

DS 620341200

30 September 1990

INPUTS

ES-VALUE
ES-DATA-ITEM
ERROR FILE

OUTPUT

ERROR-STATUS

4.1.4 Reject any derived data items. Same as

Step 3.6.

4.1.5 This step deleted.

4.1.6 Extract conceptual metadata given the tag
number. Same as Step 3.8.

4.1.7 Begin filling in a TEMP-XFORM-ENTRY as
follows:

TEMP-EC-NO = EC-NO from 4.1.6
TEMP-AUC - TAG NUMBER from

4.1.4
TEMP-TYPE - TYPE from 4.1.6
TEMP-SIZE - SIZE from 4.1.6
TEMP-ND - ND from 4.1.6
TEMP-ES-PTR = ES-ACTION-LIST

index
TEMP-LOCAL-VARIABLE = ES-A-ndml-esindex

where:
ndml = NDML-

COUNTER
esindex = ES-

ACTION-
LIST
index

4.1.8 Find the owner tag and relation class, if
any, given the current TEMP-AUC.

4.1.9 If an owner tag is found, finish filling
in the TEMP-XFORM-ENTRY as follows:

TEMP-RC-NO = RC-NO from the
previous step

TEMP-KCM-AUC-NO = owner tag from the
previous step

Otherwise, finish filling in the entry by
setting both of these to zero.

4.2 This step was moved to step 4.1.1a.

9-5

DS 620341200
30 September 1990

4.3 If there is an AUC (E5) entry that has MODEL-NO
= CURRENT-CS and EC-NO = TEMP-EC-NO (1) but does
not have AUC-NO = TEMP-AUC in any
TEMP-XFORM-ENTRY, reject the NDML statement
(user view maps to partial entity class).

4.4 For each RC (E4) entry that has MODEL-NO =
CURRENT-CS and DEP-EC-NO = TEMP-EC-NO (1), if
any, set up a Type 1 referential integrity test
by doing the following:

4.4.1 Increment NDML-COUNTER.

4.4.2a For the first TEMP-XFORM-ENTRY that has
TEMP-RC-NO = RC-NO in the RC entry, fill
in a CS-ACTION-ENTRY as follows:

CS-LOCK = ''
CS-NDML-NO = NDML-COUNTER
CS-ACTION = 'I' (for Type 1

referential integ-
rity test)

CS-ECNO = IND-EC-NO in the RC
entry

CS-AUC = TEMP-KCM-AUC-NO
CS-ES-PTR = zero
CS-LOCAL-VARIABLE = blank
CS-FCTN-NAME = blank
CS-FCTN-DISTINCT = blank
CS-DELETE-FLAG = zero
CS-SOURCE = blank

4.4.2b Extract the conceptual metadata for the
TEMP-KCM-TAG-NO.

CS-TYPE = type
CS-SIZE = size
CS-ND = ND

4.4.3a For each TEMP-XFORM-ENTRY that has
TEMP-RC-NO = RC-NO in the RC entry, fill
in a CS-QUALIFY-ENTRY as follows:

CSQ-NDML-NO = NDML-COUNTER
CSQ-ECNOL = IND-EC-NO in the

RC entry
CSQ-AUCL = TEMP-KCM-AUC-NO
CSQ-OP = '='

CSQ-VARIABLE = TEMP-LOCAL-VARIABLE
CSQ-ECNOR = zero
CSQ-AUCR = zero
CSQ-BOOLEAN = 'AND'
CSQ-ES-PTR = TEMP-ES-PTR
CSQ-R-TYPE = blank
CSQ-R-SIZE = zero
CSQ-R-ND = zero
CSQ-RCNOR = zero

9-6

DS 620341200
30 September 1990

4.4.3b Extract conceptual metadata for the
CSQ-AUCL.

CSQ-L-TYPE = type
CSQ-L-SIZE = size
CSQ-L-ND = ND

4.4.3c Eliminate duplicate CS-QUALIFY entries.
Same as step 10.

4.4.4 Leave CSQ-BOOLEAN blank in the last
CS-QUALIFY-ENTRY that is created for each
RC entry.

4.4.4a Call CDMQAL to populate the
CS-ACTION-LIST with any AUC's which are
not already represented there to support
conceptual evaluation of those data
fields not internally evaluatable.

4.4.4b Call CDPBL to populate the
LOCAL-BOOLEAN-LIST.

4.4.5 Invoke PRE5 to transform the Type 1
referential integrity test from CS to IS.

4.5 For each KC (E3) entry that has MODEL-NO =
CURRENT-CS and EC-NO = TEMP-EC-NO (1), set up a
key uniqueness test by doing the following:

4.5.1 Increment NDML-COUNTER.

4.5.2a Fill in a CS-ACTION-ENTRY as follows:

CS-LOCK = ''
CS-NDML-NO = NDML-COUNTER
CS-ACTION - 'K' (for key

uniqueness test)
CS-ECNO = TEMP-EC-NO (1)
CS-AUC = KCM-AUC-NO from

the first KCM (E6)
entry with the same
MODEL-NO and KC-NO
as the KC entry

CS-ES-PTR = zero
CS-LOCAL-VARIABLE = blank
CS-FCTN-NAME = blank
CS-FCTN-DISTINCT = blank
CS-DELETE-FLAG = zero
CS-SOURCE = blank

4.5.2b Extract conceptual metadata for the
KCM-AUC-NO

CS-TYPE = type
CS-SIZE = size
CS-ND = nd

9-7

DS 620341200
30 September 1990

4.5.3a For each KCM (E6) entry that has MODEL-NO
= CURRENT-CS and the same KC-NO as the KC
entry, fill in a CS-QUALIFY-ENTRY as
follows:

CSQ-NDML-NO = NDML-COUNTER
CSQ-ECNOL = TEMP-EC-NO (1)
CSQ-AUCL = AUC-NO in the KCM

entry
CSQ-OP ' '
CSQ-VARIABLE = TEMP-LOCAL-

VARIABLE in the
TEMP-XFORM-LIST
entry that has
TEMP-AUC = AUC-NO
in the KCM entry

CSQ-ECNOR = zero
CSQ-AUCR = zero
CSQ-BOOLEAN 'AND'
CSQ-R-TYPE = blank
CSQ-R-SIZE = zero
CSQ-R-ND = zero
CSQ-RCNOR = zero
CSQ-SOURCE = space

4.5.3b Extract conceptual metadata for the
CSQ-AUCL.

CSQ-L-TYPE = type
CSQ-L-SIZE = size
CSQ-L-ND = ND

4.5.3c Eliminate duplicate CS-QUALIFY entries.
Same as step 10.

4.5.4 Leave CSQ-BOOLEAN blank in the last
CS-QUALIFY-ENTRY for each KC entry.

4.5.4a Call CDMQAL to populate the
CS-ACTION-LIST with any AUC's which are
not already represented there to support
conceptual evaluation of those data
fields not internally evaluatable.

4.5.4b Call CDPBL to populate the
LOCAL-BOOLEAN-LIST.

4.5.5 Invoke PRE5 to transform the key

uniqueness test from CS to IS.

4.6 Set up the insertion by doing the following:

4.6.1 This step deleted.

4.6.2 For each TEMP-XFORM-ENTRY fill in a
CS-ACTION-ENTRY as follows:

9-8

DS 620341200
30 September 1990

CS-ECNO = TEMP-EC-NO
CS-AUC = TEMP-AUC
CS-TYPE - TEMP-TYPE
CS-SIZE - TEMP-SIZE
CS-ND = TEMP-ND
CS-ES-PTR - TEMP-ES-PTR
CS-LOCAL-VARIABLE = TEMP-LOCAL-

VARIABLE
CS-FCTN-NAME = blank
CS-FCTN-DISTINCT = blank
CS-SOURCE - blank
CS-DELETE-FLAG = zero
IF ES-ACTION not = delete
ES-CS-PTR (CS-ES-PTR (CS-INDEX)) =

CS-INDEX

5. If ES-ACTION = 'M', do the following:

5.1 Transform each ES-ACTION-ENTRY by doing the
following:

5.1.1 Fill in ES-UV-NO with the UV-NO from the
UV-ABBR-ENTRY that has UV-ABBR =
ES-UV-ABBR. Same as Step 3.1

5.1.1a Reject NDML statement if view maps to
more than one entity class. Same as step
4.1.1a.

5.1.2 Populate external metadata and ES-DI-NO.

For each used ES-DATA-ITEM, extract
external metadata and data item number by
calling CDEMD with the following
parameters:

INPUTS:

USER-VIEW-NO
DATA-ITEM-NAME
ERROR-FILE

OUTPUTS:

DI-NO
ETYPE
ESIZE
E-ND
RET-STATUS

Populate the current ES-DI-NO with DI-NO,
the current ES-TYPE with ETYPE, the
current ES-SIZE with ESIZE and the
current ES-ND with E-ND.

5.1.3 For each ES-VALUE entry whose index is
less than or equal to ES-VE-USED
(ES-INDEX) which has the corresponding
ES-LOCAL-VARIABLE equal to spaces and

9-9

DS 620341200
30 September 1990

which has the corresponding ES-TYPE equal
to I, F, N, P or S, call CDVNV to insure
that the value is numeric. Call CDVNV
with the following parameters:

INPUTS:

ES-VALUE
ES-DATA-ITEM
ERROR-FILE

OUTPUTS:

ERROR-STATUS

5.1.4 Reject any derived data items. Same as
Step 3.6.

5.1.5 This step deleted.

5.1.6 Extract conceptual metadata given the tag
number. Same as Step 3.8

5.1.7 Begin filling in a TEMP-XFORM-ENTRY.
Same as Step 4.1.7.

5.1.8 Find owner tag and relation class, if
any. Same as Step 4.1.8.

5.1.9 Update the current TEMP-XFORM row. Same
as Step 4.1.9.

5.2 This step moved to step 5.1.1a.

5.3 If there is any KCM (E6) entry that has MODEL-NO
= CURRENT-CS and AUC-NO = TEMP-AUC in a
TEMP-XFORM-ENTRY, reject the NDML statement
(modification of key class member).

5.4 If there is any IAC (E7) entry that has MODEL-NO
= CURRENT-CS and RC-NO = TEMP-RC-NO (other than
zero) in a-TEMP-XFORM-ENTRY but does not have
AUC-NO = TEMP-AUC in that TEMP-XFORM-ENTRY,
reject the NDML statement (modification of
partial inherited key class).

5.5 For each RC (E4) entry that has MODEL-NO =
CURRENT-CS and RC-NO = TEMP-RC-NO (other than
zero) in a TEMP-XFORM-ENTRY, if any, set up a
Type 1 referential integrity test by doing the
following:

5.5.1 Increment NDML-COUNTER. Same as 4.4.1.

5.5.2a Fill in a CS-ACTION entry for the first
TEMP-XFORM-ENTRY whose TEMP-RC-NO matches
the RC-NO from 5.5. Same as 4.4.2a.

9-10

DS 620341200
30 September 1990

5.5.2b Extract conceptual metadata for the
TEMP-KCM-TAG-NO. Same as 4.4.2b.

5.5.3a Fill in a CS-QUALIFY ENTRY for each
TEMP-XFORM-ENTRY whose TEMP-RC-NO matches
the RC-NO from 5.5. Same as 4.4.3a.

5.5.3b Extract conceptual metadata for the
CSQ-AUCL. Same as 4.4.3b.

5.5.3c Eliminate duplicate CS-QUALIFY entries.
Same as step 10.

5.5.4 Leave CSQ-BOOLEAN blank in the last
CS-QUALIFY entry for each RC entry. Same
as 4.4.4.

5.5.4a Move AUC's from the CS-QUALIFY list to
the CS-ACTION list. Same as 4.4.4a.

5.5.4b Populate the local boolean list. Same as
4.4.4b.

5.5.5 Transform the Type 1 Referential
Integrity Test from conceptual to
internal. Same as 4.4.5.

5.6 Set up the modification by doing the following:

5.6.1 This step deleted.

5.6.2 Fill in a CS-ACTION entry for each
TEMP-XFORM-ENTRY. Same as 4.6.2.

6. If ES-ACTION = 'D', do the following:

6.1 Fill in ES-UV-NO (1) from UV-NO (1).

6.2 Reject the NDML statement if it maps to multiple
entity classes. Same as step 4.1.1a.

6.3 This step was moved to 6.2.

6.4 For each AUC that has MODEL-NO = CURRENT-CS and
VIEW-NO = ES-UV-NO (1), do the following:

6.4.1 This step deleted.

6.4.2 Extract conceptual metadata and entity

class number. Same as Step 3.8.

6.2.2a This step deleted.

6.4.3 Begin filling in a TEMP-XFORM-ENTRY.
Same as Step 4.1.7.

9-11

DS 620341200
30 September 1990

6.4a If a "using" clause appeared in the Delete
statement (UV-USED is greater than 1), call
CDVJUV with the following parameters to verify
that the target user view is joined.

INPUT:

UV-ABBR-LIST
ES-QUALIFY-LIST
ERROR-FILE

OUTPUT:

ERROR-STATUS

If the ERROR-STATUS returns with a non-zero
value, exit.

6.4b Transform each ES-QUALIFY entry, if any, by
doing the following:

6.4.bl Fill in ESQ-L-UV-NO. Same as Step 8.1.

6.4.b2 Fill in ESQ-L-DI-NO and ESQ-L-TYPE,
ESQ-L-SIZE and ESQ-L-ND from the CDM.
Same as Step 8.2.

6.4.b3 Verify that the ESQ-VALUE is numeric if
ESQ-L-TYPE is numeric. Saie as Step 8.3.

6.4.b4 Verify that the data item is not derived
and extract the tag number mapped to by
the current data item. Same as Step 8.4.

6.4.b5 Extract conceptual metadata for the tag
number extracted in the previous step.
Same as Step 8.5.

6.4.b6 Begin filling in a CS-QUALIFY entry.

CSQ-ECNOL = EC-NO from Step 6.4.b5
CSQ-AUCL = TAG-NO from Step 6.4.b4
CSQ-OP = ESQ-OP
CSQ-ECNOR = ZERO
CSQ-AUCR = ZERO
CSQ-BOOLEAN = ESQ-BOOLEAN
CSQ-L-TYPE = TYPE from Step 6.4.b5
CSQ-L-SIZE = SIZE from Step 6.4.b5
CSQ-L-ND = ND from Step 6.4.b5
CSQ-R-TYPE = BLANK
CSQ-R-SIZE = ZERO
CSQ-R-ND = ZERO
ESQ-CS-PTR = CSQ-INDEX
CSQ-RCNOR = ZERO
CSQ-ES-PTR = ESQ-INDEX
ESQ-R-UV-NO = ZERO
ESQ-R-DI-NO = ZERO

9-12

DS 620341200
30 September 1990

ESQ-R-TYPE = BLANK
ESQ-R-SIZE = ZERO
ESQ-R-ND = ZERO

If ESQ-UV-ABBRR is blank, move

ES-Q-ndml-esqindex to CSQ-VARIABLE where
ndml is the NDML-COUNTER and esqindex is
the current ESQ-INDEX.

IF ESQ-UV-ABBRR is not blank, move spaces
to CSQ-VARIABLE.

6.4.b7 If ESQ-UV-ABBRR is not blank, do the
following.

6.4.b.7.1 Fill in ESQ-R-UV-NO. Same as
Step 8.7.1.

6.4.b.7.2 Fill in ESQ-R-DI-NO and
ESQ-R-TYPE, ESQ-R-SIZE and
ESQ-R-ND from the CDM. Same
as Step 8.7.2.

6.4.b.7.3 Verify that both or neither
ESQ-L-TYPE and ESQ-R-TYPE are
character; otherwise, reject
the NDML statement
(incompatable qualify data
types). Same as Step 8.7.3.

6.4.b.7.4 Verify that ESQ-DATA-ITEMR is
not derived. Same as 8.7.4.

6.4 .b. 7.5 Extract conceptual metadata
for the tag mapped to by
ESQ-DATA-ITEMR. Same as Step
8.7.5.

6.4.b.7.6 Continue filling in a
CSQ-ENTRY.

CSQ-ECNOR = EC-NO from Step
6.4.b.7.5

CSQ-AUCR = TAG-NO from Step
6.4 .b.7.4

CSQ-R-TYPE = TYPE from Step
6.4 .b.7 .5

CSQ-R-SIZE = SIZE from Step
6.4.b.7.5

CSQ-R-ND = ND from Step
6.4.b.7.5

CSQ-SOURCE = U (USER ENTERE

9-13

DS 620341200
30 September 1990

6.4.b.7.7 If CSQ-OP is U= (Outer join),
extract the RC-NO from
INHERITED ATT USE where the
tag number equals CSQ-AUCR.
Same as Step 8.7.7.

CSQ-RCNOR = RC-NO

6.4.c Remove duplicate CS-QUALIFY entries. Same as
Step 10.

6.4.d Call CDGTV to add type 2 qualifications to the
CS-QUALIFY and add to the BOOLEAN-LIST as
follows:

6.4.d.1 Select type 2 qualifications from the
USERVIEW. (AUC OP VARIABLE)

6.4.d.2 Force the last CSQ-BOOLEAN entry to
"AND".

6.4.d.3 Begin filling in CS-QUALIFY entry.

CSQ-ECNOR = ZERO
CSQ-AUCR = ZERO
CSQ-ES-PTR = ZERO
CSQ-RCNOR = ZERO
CSQ-R-SIZE = ZERO
CSQ-R-ND = ZERO
CSQ-R-TYPE = SPACE

6.4.d.4 If the type 2 qualificatiion selected
in step 6.4.d.1 is a tag number:

6.4.d.4.1 Retrieve the entity number
for the tag from
AttributeUseClass.

6.4.d.4.2 Extract the conceptual
metadata for the tag
number.

6.4.d.4.3 Continue filling in the
CS-QUALIFY:

CSQ-ECNOL = EC-NO from
step

6.4.d.4.1
CSQ-AUCR = AUC from
step 6.4.d.1
CSQ-LTYPE = Type from
step 6.4.d.4.2
CSQ-L-SIZE = Size from
step 6.4.d.4.2
CSQ-L-ND = Number decimals
from step 6.4.d.4.2
CSQ-SOURCE = V 6.4.d.4.4
Fill in the BOOLEAN-LIST
BL-CSQ-PTR = CSQ-USED

9-14

DS 620341200
30 September 1990

BL-OP = SPACES
BL-EVAL-FLAG = SPACES
BL-CS-PTR = ZEROS
BL-ESQ-PTR = ZEROS

6.4.d.5 If the type 2 qualification selected
in step 6.4.d.1 is a logical operator.
Fill in the BOOLEAN-LIST as follows:

BL-OP = Logical operator selected in
step 6.4.d.1

BL-ESQ-PTR = ZERO
BL-CSQ-PTR = ZERO
BL-CS-PTR = ZERO
BL-EVAL-FLAG = ZERO

6.4.d.5.a If the logical operator is
an "AND" or "OR", fill
in the CS-QUALIFY:
CSQ-BOOLEAN = Logical
operator

6.4.d.6 If the type 2 qualification selected i
step 6.4.d.1 is a comparison operator,
continue filling in the CSQ-QUALIFY.

CSQ-OP = Comparison operator

6.4.d.7 If the type 2 qualification selected
is a literal constant or a numeric
constant, continue filling in the
CS-QUALIFY.

CSQ-VARIABLE = Numeric or literal
constant

6.5 For each RC (E4) entry that has MODEL-NO =
CURRENT-CS and IND-EC-NO = TEMP-EC-NO (1), if
any, set up a Type 2 referential integrity test
by doing the following:

6.5.1 Increment NDML-COUNTER.

6.5.2 For the first IAC (E7) entry that has
MODEL-NO = CURRENT-CS and the same RC-NO
as the RC entry, fill in a
CS-ACTION-ENTRY as follows:

CS-LOCK = ''
CS-NDML-NO = NDML-COUNTER
CS-ACTION - '2' (for Type 2

referential inte-
grity test)

CS-ECNO = DEP-EC-NO in the RC
entry

CS-AUC - AUC-NO in the IAC
entry

CS-TYPE - Type of CS-AUC

9-15

DS 620341200
30 September 1990

CS-SIZE = Size of CS-AUC
CS-ND = ND of CS-AUC
CS-ES-PTR = ZERO
CS-LOCAL-VARIABLE = blank
CS-FCTN-NAME = blank
CS-FCTN-DISTINCT = blank
CS-DELETE-FLAG = ZERO
CS-SOURCE = blank

6.5.3 For each IAC entry that has MODEL-NO =
CURRENT-CS and the same RC-NO as the RC
entry, fill in a new CS-QUALIFY-ENTRY as
follows:

CSQ-NDML-NO = NDML-COUNTER
CSQ-ECNOL = DEP-EC-NO in the RC

entry
CSQ-AUCL = AUC-NO in the IAC

entry
CSQ-OP - =

CSQ-VARIABLE = blank
CSQ-ECNOR = IND-EC-NO in the RC

entry
CSQ-AUCR = KCM-AUC-NO in the

IAC entry
CSQ-BOOLEAN = 'AND'
CSQ-ES-PTR = ZERO
CSQ-RCNOR = ZERO
CSQ-L-TYPE = Type of CSQ-AUCL
CSQ-L-SIZE Size of CSQ-AUCL
CSQ-L-ND = ND of CSQ-AUCL
CSQ-R-TYPE = Type of CSQ-AUCR
CSQ-R-SIZE Size of CSQ-AUCR
CSQ-R-ND = ND of CSQ-AUCR
CSQ-SOURCE 'U'

6.5.4 Step moved to 6.4.b

6.5.5 Eliminate duplicate CS-QUALIFY entries.
Same as Step 10.

6.5.6 Leave CSQ-BOOLEAN blank in the last
CSQ-QUALIFY-ENTRY for each RC entry.

6.5.6A Call CDMQAL to populate the
CS-ACTION-LIST with any AUC's which are
not already represented there to support
conceptual evaluation of those data
fields not internally evaluatable.

6.5.6B Call CDPBL to populate the BOOLEAN-LIST.

6.5.7 Invoke PRE5 to transform the Type 2
referential integrity test from CS to IS.

6.6 Set up the deletion by doing the following:

6.6.1 This step deleted.

9-16

DS 620341200
30 September 1990

6.6.2 Fill in a CS-ACTION-entry for each
TEMP-XFORM-ENTRY. Same as 4.6.2.

7. If a Select and no qualifications are entered,
generate a warning to the user and continue (CPR
00093).

8. Transform each ES-QUALIFY entry, if Select or Modify.

8.01 If processing a Modify and a using clause
appeared in the NDML statement, call CDJUV with
the following parameters to verify the target
user view is joined.

INPUTS:

UV-ABBR-LIST
ES-QUALIFY-LIST
ERROR-FILE

OUTPUTS:

ERROR-STATUS

If the ERROR-STATUS returns with a non-zero
value, exit.

Perform the following steps for each ES-QUALIFY
entry.

8.1 Fill in ESQ-L-UV-NO with UV-NO from the
UV-ABBR-LIST entry that has UV-ABBR -

ESQ-UV-ABBRL.

8.2 Fill in ESQ-L-DI-NO with DI-NO from the DI (E16)
entry that has VIEW-NO = ESQ-L-UV-NO and DI-NAME
= ESQ-DATA-ITEML. If no such DI entry is found,
reject the NDML statement (nonexistent data
item).

8.3 For each ESQ entry which has ESQ-L-TYPE equal to
I, P, N, F or S and which has the corresponding
ESQ-UV-ABBRR and ESQ-LOCAL-VARIABLE equal to
spaces, call CDVNV to verify the ESQ-VALUE is
numeric. Call CDVNV with the following
parameters:

INPUTS:

ESQ-VALUE
ESQ-DATA-ITEML
ERROR-FILE

OUTPUTS:

ERROR-STATUS

8.4 Verify that ESQ-DATA-ITEML is not derived and
extract the tag number which is mapped to.

9-17

DS 620341200
30 September 1990

8.5 Extract conceptual metadata and entity class
number for the tag number in the previous step.

8.6 Begin filling in a CS-QUALIFY-ENTRY as follows:

CSQ-ECNOL =EC-NO from Step 8.5
CSQ-AUCL =TAG-NO from Step 8.4
CSQ-OP =ESQ-OP

CSQ-ECNOR =ZERO

CSQ-AUCR =ZERO

CSQ-BOOLEAN =ESQ-BOOLEAN

CSQ-L-TYPE =TYPE from Step 8.5
CSQ-L-SIZE =SIZE from Step 8.5
CSQ-L-ND =ND from Step 8.5
CSQ-R-TYPE =BLANK

CSQ-R-SIZE =ZERO

CSQ-R-ND =ZERO

ESQ-CS-PTR =CSQ-INDEX

CSQ-SOURCE $ U'
CSQ-RCNOR =ZERO

CSQ-ES-PTR =ESQ-INDEX

ESQ-R-UV-NO =ZERO

ESQ-R-DI -NO =ZERO

ESQ-R-TYPE =BLANK

ESQ-R-SIZE =ZERO

ESQ-R-ND =ZERO

If ESQ-UV-ABBRR is blank, move
ES-Q-ndml-esqindex to CSQ-VARIABLE

Where ndml is the NDML-COUNTER and esqindex is
the current ESQ-INDEX.

If ESQ-UV-ABBRR is not blank, move spaces to
CSQ-VARIABLE.

8.7 If ESQ-UV-ABBRR is filled in, do the following:

8.7.1 Fill in ESQ-R-UV-NO with UV-NO from the
UV-ABBR-ENTRY that has UV-ABBR=
ESQ-UV-ABBRR.

8.7.2 Fill in conceptual metadata for
ESQ-DATA-ITEMR and extract the data item
number.

ESQ-R-DI-NO = DATA ITEM NUMER
ESQ-R-TYPE = TYPE
ESQ-R-SIZE = SIZE
ESQ-R-ND = ND

8.7.3 If either ESQ-L-TYPE is character and
ESQ-R-TYPE is not character or ESQ-R-TYPE
is character and ESQ-L-TYPE is not
character, reject the NDML statement
(incompatable qualify data types).

9-18

DS 620341200
30 September 1990

8.7.4 Verify that ESQ-DATA-ITEMR is not derived
and extract the tag to which it maps.

8.7.5 Extract conceptual metadata and entity
class number for the tag in the previous
step.

8.7.6 Continue filling in the CS-QUALIFY-ENTRY
as follows:

CSQ-ECNOR = EC-NO from Step
8.7.5

CSQ-AUCR = TAG-NO from Step
8.7.4

CSQ-R-TYPE = Type from Step
8.7.5

CSQ-R-SIZE = Size from Step

8.7.5

CSQ-R-ND = ND from Step 8.7.5

8.7.7 If CSQ-OP is U= (Outer join), extract the
RC-NO from INHERITEDATTUSE where the
tag number equals CSQ-AUCR.

CSQ-RCNOR - RC-NO

8.7.8 Remove duplicate CS-QUALIFY entries.
Same as Step 10.

8.02 If ES-ACTION = "M", "s" or "Q", call CDGTVW to
select the type 2 qualifications from the
USER-VIEW and build the CS-QUALIFY and
BOOLEAN-LIST. Same as step 6.4.d.

9. If ES-ACTION = "S" or "Q" for each UV-ABBR-ENTRY set
up any additional join operations that are needed to
compose the user view referenced in that entry by
doing the following:

9.1 Find all the ECUVJ (E79) entries that have
MODEL-NO = CURRENT-CS and VIEW-NO = UV-NO. If
no such ECUVJ entries are found, this user view
is not the result of any join operations and can
be ignored for the remainder of Step 9.

9.2 For each ECUVJ entry that is found do the
following:

9.2.1 Select all type 3 qualifications from
USER VIEW on the CDM in the form of tag
number operator tag number.

9.2.1.a For each pair of tag numbers
selected in step 9.2.1,
determine from INHERITEDATTUSE

9-19

DS 620341200
30 September 1990

which is the independent tag
number and which is the
dependent tag number and
retrieve the RC number (RCNO)
for that combination.

9.2.1.b Retrieve the dependent entity
and independent entity from
RELATIONCLASS for that RCNO.

9.2.2 Fill in a TEMP-JOIN-ENTRY as follows:

TEMP-IND-EC = IND-EC-NO in the RC entry
TEMP-DEP-EC = DEP-EC-NO in the RC entry
TEMP-IND-TAG = Independent tag from

step 9.2.1.a
TEMP-DEP-TAG = Dependent tag from

step 9.2.1.a
TEMP-RC = RC-NO in the RC entry
TEMP-JOIN = Operator from step 9.2.1

Note: The TEMP-JOIN-LIST should not contain
entries for more than one user view at a
time. After it has been loaded from the
RC entries for one user view, Steps 9.3 -
9.5 should be performed. Then it should
be emptied before it is used for the next
user view.

9.3 Find all the TEMP-JOIN-ENTRYs that reference
"leaf" entity classes. A leaf entity class is
one whose EC-NO appears in only one
TEMP-JOIN-ENTRY, in either TEMP-IND-EC or
TEMP-DEP-EC. It may not appear in TEMP-IND-EC
in one entry and in TEMP-DEP-EC in another.

9.4 Eliminate each TEMP-JOIN-ENTRY from Step 9.3
whose leaf EC-NO does not appear in any of the
following:

CS-ECNO in any CS-COLUMN-ENTRY
CSQ-ECNOL in any CS-QUALIFY-ENTRY
CSQ-ECNOR in any CS-QUALIFY-ENTRY

The elimination of a TEMP-JOIN-ENTRY may cause
another entity class to now qualify as a leaf,
so if any entries are eliminated, return to Step
9.3 to re-examine all the entries that remain.

9.5 (Having determined that each leaf entity class
that is referenced in a remaining
TEMP-JOIN-ENTRY is also referenced in at least
one CS-ACTION-ENTRY or one CS-QUALIFY-ENTRY)
for each remaining TEMP-JOIN-ENTRY,if any, do
the following:

9-20

DS 620341200
30 September 1990

9.5.1 If the CS-QUALIFY-LIST is not empty and
if its last entry has CSQ-BOOLEAN =
blank, move 'AND' to CSQ-BOOLEAN in the
last entry.

9.5.2 For each IAC entry that has MODEL-NO=
CURRENT-CS and RC-NO = TEMP-RC, fill in a
CS-QUALIFY-ENTRY as follows:

CSQ-ECNOL -TEMP-IND-EC

CSQ-AUCL -KCM-AUC-NO in the
IAC entry

CSQ-OP - =1

CSQ-VARIABLE =blank

CSQ-ECNOR -TEMP-DEP-EC

CSQ-AUCR -AUC-NO in the IAC
entry

CSQ-BOOLEAN ='AND'

CSQ-RCNOR -ZERO or RCNO
CSQ-SOURCE 'IV" from

this is an outerstp921ai
join

9.5.3 Extract conceptual metadata for CSQ-AUCL.

9.5.4 Extract conceptual metadata for CSQ-AUCR.

10. Eliminate any duplicate CS-QUALIFY entries satisfying

the following requirements:

CSQ-OP (I) =' and
CSQ-OP (I) =CSQ-OP (J) and
CSQ-ECNOR (I) not =0 and

either (CSQ-ECNOL (I) =CSQ-ECNOL (J) and
CSQ-AUCL (I) =CSQ-AUCL (J) and
CSQ-ECNOR (I) =CSQ-ECNOR (J) and
CSQ-AUCR (I) =CSQ-AUCR PJ))

or (CSQ-ECNOL (I) =CSQ-ECNOR (J) and
CSQ-AUCL (I) =CSQ-AUCR (J) and
CSQ-ECNOR (I) =CSQ-ECNOL (J) and
CSQ-AUCR (I) =CSQ-AUCL PJ))

11. Leave CSQ-BOOLEAN blank in the last CS-QUALIFY-ENTRY.

12. Transform the NDML request from CS to IS.

12.1 If ES-ACTION =Q then
CS-ACTION =S

Else
CS-ACTION =ES-ACTION

NDML-COUNTER = NDML-COUNTER +1
CS-NDML-NO = NDML-COUNTER

9-21

DS 620341200
30 September 1990

If Select or Select combination or delete or
modify,

Call CDMQAL to populate the ES and CS action
lists with any data items or AUC's which aren't
already represented there to support conceptual
9ualification of thoses data fields not
internally evaluatable.

12.2 If Select or Select combination or delete or
modify,

Call CDPBL to populate BL-CS-PTR and
BL-CSQ-PTR.

12.3 Complete filling in CS ACTION and CS QUALIFY
lists.

If CSQ-USED > 0 then
CSQ-NDML-NO = NDML-COUNTER

Insert the current NDML-COUNTER into each
populated CSQ-VARIABLE and CS-LOCAL-VARIABLE.

If Select,

CS-LOCK = ES-LOCK

If INSERT, MODIFY or DELETE,

CS-LOCK = X

12.4 Invoke PRE5 to transform the NDML request from
CS to IS.

13. Upon completion of precompilation by PRE5, update the
CDM cross reference.

13.1 Delete Action

If the ES-ACTION is delete, store a new
occurrence of VU (E280) by calling CDIDIU with
the following parameters.

INPUTS:

USER-MOD-ID
DI-NO
VIEW-NO
USAGE-CODE

OUTPUTS:

RET-STATUS

The DI-NO should contain zero. The VIEW-NO
should contain the value in UV-NO (1) from the
UV-ABBR-LIST. The USAGE-CODE should contain D.

9-22

DS 620341200
30 September 1990

13.2 Insert, Modify, Select or Select Combination
Actions

For ES-ACTIONs of insert, modify, select, or
select combination store new occurences of DIU
(E281).

For each ES-ACTION entry with ES-SOURCE not -

'GI, call CDIDIU with the following parameter:

INPUTS:

USER-MOD-ID
DI-NO
VIEW-NO
USAGE-CODE

OUTPUTS:

RET-STATUS

The DI-NO should contain the current ES-DI-NO.
The VIEW-NO should contain zero. The USAGE-CODE
should contain the ES-ACTION.

13.3 Select, Modify, Delete, or Select Combination
Actions

For each ESQ-L-DI-NO and ESQ-R-DI-NO not equal

zero, call CDIDIU with the following parameters:

INPUTS:

USER-MOD-ID
DI-NO
VIEW-NO
USAGE-CODE

OUTPUTS:

RET-STATUS

The DI-NO should contain either the ESQ-L-DI-NO
or ESQ-R-DI-NO. The VIEW-NO should contain
zero. The USAGE-CODE should contain Q.

9.3 Outputs

1. The NDML conceptual schema request represented by the
CS-ACTION-LIST and CS-QUALIFY-LIST.

These will be input to the CS NDML Decomposer. The
CS-ACTION-LIST is also input to the CS/ES Transform
Generator and the Call and Message Builder.

2. Metadata describing the ES/CS transform.

9-23

DS 620341200
30 September 1990

These metadata are input to the CS/ES Transform
Generator (PRES) and Call and Message Builder
(PREl0). They include:

a. ES-ACTION-LIST - PRE3 creates this list. PRE4
adds user view and data item numbers to it.

b. ES-QUALIFY-LIST - PRE3 creates this list. PRE4
adds user view and data item numbers to it.

3. NDML-COUNTER (returned to MAIN)

4. CDM Metadata

View Usage = VU (E280)
Data Item Usage = DIU (E281)

5. RET-STATUS

Completion Status.

9.4 Internal Data Requirements

The following table is used in Steps 4-6 to temporarily
store metadata about an NDML update request expressed in
conceptual schema terms.

01 TEMP-XFORM-LIST.
03 TEMP-XFORM-ENTRY OCCURS ?? TIMES.

05 TEMP-EC-NO PIC 9(5).
05 TEMP-AUC PIC 9(6).
05 TEMP-TYPE PIC X.
05 TEMP-SIZE PIC 9(3).
05 TEMP-ND PIC 9(2).
05 TEMP-ES-PTR PIC 9(2).
05 TEMP-LOCAL-VARIABLE PIC X(30).
05 TEMP-RC-NO PIC 9(5).
05 TEMP-KCM-AUC-NO PIC 9(6).

The following table is used in Step 9 to temporarily store
metadata about joins that may have to be performed.

01 TEMP-JOIN-LIST.
03 TEMP-JOIN-ENTRY OCCURS ?? TIMES.

05 TEMP-IND-EC PIC 9(5).
05 TEMP-IND-TAG PIC S9(4) comp.
05 TEMP-DEP-EC PIC 9(5).
05 TEMP-DEP-TAG PIC S9(4) comp.
05 TEMP-RC PIC X(30).
05 TEMP-JOIN PIC XX.

Neither table is input to nor output from this function.

9-24

DS 620341200

30 September 1990

SECTION 10

FUNCTION CDVJUV - VERIFY JOIN TO TARGET USER VIEW

This routine verifies that there is at least one type 3
qualification referencing the target table. This routine should
be called only for delete and modify actions which employ the
using clause.

10.1 Inputs

1. UV-ABBR-LIST

UV-ABBR-LIST contains information about the user
views referenced in an NDML statement.

2. ES-QUALIFY-LIST

ES-QUALIFY-LIST contains the external representation
of the WHERE clause.

3. ERROR-FILE PIC X(30)

ERROR-FILE contains the name of the file to which
error messages are generated.

10.2 CDM Requirements

None

10.3 Internal Requirements

None

10.4 Processing

1. Return if no using clause in the NDML statement.

If UV-USED equals 1, exit the program with
ERROR-STATUS equal zero.

2. Search for a match between UV-ABBR (1) and any used
ESQ-UV-ABBRL. If not found, go to step 3, otherwise perform
the following steps:

2.1 If the corresponding ESQ-UV-ABBRR equals
spaces, go back to step 2 and continue the search.

2.2 If the corresponding ESQ-UV-ABBRR equals ESQ-UV-ABBRL, go
back to step 2 and continue the search.

2.3 Exit the program with ERROR-STATUS equal zero.

3. Search for a match between UV-ABBR(l) and any used
ESQ-UV-ABBRR.

10-1

DS 620341200
30 September 1990

3.1 If a match is not found, set ERROR-STATUS
to 1, generate the following error message using RPTERR,
increment USER-ERROR-COUNT by 1 and exit the program.

uv-name NOT IN JOIN CRITERIA

where uv-name contains the value of UV-NAME (1).

3.2 If a match is found and the corresponding ESQ-UV-ABBRL
equals ESQ-UV-ABBRR, return to step 3 and continue the
search.

3.3 If a match is found and the corresponding ESQ-UV-ABBRL does
not equal ESQ-UV-ABBRR, exit the program with ERROR-SS±ATUS
equal to zero.

10.5 Outputs

1. USER-ERROR-COUNT PIC 9(5)

USER-ERROR-COUNT contains the count of user errors encountered.

2. ERROR-STATUS PIC 9

ERROR-STATUS contains the return status for this module.
Zero indicates success; 1 indicates failure.

10-2

DS 620341200

30 September 1990

SECTION 11

FUNCTION CDVNV - VERIFY NUMERIC VALUE

This routine validates that a character string contains a

numeric value.

11.1 Inputs

1. VALUE-IN PIC X(30)

VALUE-IN contains the value to be checked.

2. DATA-ITEM PIC X(30)

DATA-ITEM contains the name of the dataitem to be compared
against the value.

3. ERROR-FILE PIC X(30)

ERROR-FILE contains the file name to which error messages will
be generated.

11.2 CDM Requirements

None

11.3 Internal Requirements

None

11.4 Processing

1. Validate that VALUE-IN satisfies the following rules:

1.1 A sign, if present, must be either "+" or "-" and must
immediately preceed a decimal digit or decimal point.

1.2 The number including sign, may begin at any character
position, as long as there are no embedded blanks.

1.3 There may be, at most, 1 decimal point.

1.4 A decimal number must either preceed or follow the
decimal point. A decimal number may both preceed and
follow the decimal point.

1.5 At least 1 decimal digit must appear in the number.

2. If any of the above rules are violated, set ERROR-STATUS to 1

and generate the following message:

DATA-ITEM must be compared with a numeric value.

3. Terminate processing.

11-1

DS 620341200
30 September 1990

11.5 Outputs

1. ERROR-STATUS PIC 9

ERROR-STATUS indicator contains zero if VALUE-IN is
numeric and 1 if not numeric.

11-2

DS 620341200

30 September 1990

SECTION 12

FUNCTION CDMQAL - BUILD ES/CS ACTION LIST ENTRIES

This routine places ES-QUALIFY and/or CS-QUALIFY entries
which are not represented in the ES-ACTION-LIST and
CS-ACTION-LIST respectively on those lists in support of
conceptual evaluation of those qualify entries not internally
evaluated.

12.1 Inputs

1. ES-ACTION-LIST

2. ES-QUALIFY-LIST

3. CS-ACTION-LIST

4. CS-QUALIFY-LIST

12.2 CDM Requirements

None

12.3 Internal Requirements

None

12.4 Processing

1. If processing a select, query combination, type 1
referential integrity test, type 2 referential
integrity test, modify, delete or a key uniqueness
test, add new CS-ACTION entries.

1.1 Scan the CS-QUALIFY-LIST. For each used
CSQ-ECNOL/CSQ-AUCL combination which matches no
used CS-ECNO/CS-AUC combination, add a new
CS-ACTION entry.

1.1.1 Add 1 to CS-USED.

1.1.2 If CS-USED is greater than CS-MAX,
generate a fatal error message and exit.

1.1.3 Populate the following CS-ACTION items:

CS-DELETE-FLAG = zero
CS-ECNO = CSQ-ECNOL
CS-AUC = CSQ-AUCL
CS-TYPE = CSQ-L-TYPE
CS-SIZE = CSQ-L-SIZE
CS-ND = CSQ-L-ND
CS-LOCAL-VARIABLE = blank
CS-FCTN-NAME = blank

12-1

DS 620341200
30 September 1990

CS-FCTN-DISTINCT = blank
CS-SOURCE = G
CS-ES-PTR = zero

1.2 Scan the CS-QUALIFY-LIST again. For each used
non-zero CSQ-ECNOR/CSQ-AUCR combination which matches
no used CS-ECNO/CS-AUC combination, add a new
CS-ACTION entry.

1.2.1 Add 1 TO CS-USED.

1.2.2 If CS-USED is greater than CS-MAX, generate a
fatal error message and exit.

1.2.3 Populate the following CS-ACTION items.

CS-DELETE-FLAG = zero
CS-ECNO = CSQ-ECNOR
CS-AUC = CSQ-AUCR
CS-TYPE = CSQ-R-TYPE
CS-SIZE = CSQ-R-SIZE
CS-ND = CSQ-R-ND
CS-LOCAL-VARIABLE = blank
CS-FCTN-NAME = blank
CS-FCTN-DISTINCT = blank
CS-SOURCE = G
CS-ES-PTR = zero

2. If processing a select or query combination, add new
ES-ACTION entries.

2.1 Scan the ES-QUALIFY-LIST. For each used
ESQ-L-UV-NO/ESQ-L-DI-NO combination which
matches no used ES-UV-NO/ES-DI-NO combination,
add a new ES-ACTION entry.

2.1.1 Add 1 TO ES-USED.

2.1.2 If ES-USED is greater than ES-MAX,
generate a fatal error message and exit.

2.1.3 Populate the following ES-ACTION items.

ES-DELETE-FLAG = zero
ES-UV-ABBR = ESQ-UV-ABBRL
ES-DATA-ITEM = ESQ-DATA-ITEML
ES-VE-USED = zero
ES-VALUE-ENTRYs 1 through 5 = blank
ES-SORT-SEQUENCE = zero
ES-SORT-DIRECTION = blank
ES-PROJECT-FLAG = N
ES-FCTN-NAME = blank
ES-FCTN-DISTINCT = blank
ES-UV-NO = ESQ-L-UV-NO
ES-DI-NO = ESQ-L-DI-NO
ES-TYPE = ESQ-L-TYPE

12-2

DS 620341200
30 September 1990

ES-SIZE = ESQ-L-SIZE
ES-ND = ESQ-L-ND
ES-SOURCE = G

2.1.4 Populate the current ES-CS-PTR and the
corresponding CS-ES-PTR.

2.1.4.1 Look at the CSQ-ECNOL/CSQ-AUCL
combination pointed to by the
current ESQ-CS-PTR.

2.1.4.2 Scan the CS-ACTION-LIST looking
for a match between the
CSQ-ECNOL/CSQ-AUCL combination
found in the previous step and
a CS-ECNO/CS-AUC combination.

2.1.4.3 When a match is found,
populate both pointers.

ES-CS-PTR = CS-INDEX
CS-ES-PTR = ES-INDEX

2.2 Scan the ES-QUALIFY-LIST again. For each used
non-zero ESQ-R-UV-NO/ESQ-R-DI-NO combination
which matches no used ES-UV-NO/ES-DI-NO
combination, add a new ES-ACTION entry.

2.2.1 Add 1 to ES-USED.

2.2.2 If ES-USED is greater than ES-MAX,
generate a fatal error message and
exit.

2.2.3 Populate the following ES-ACTION items.

ES-DELETE-FLAG = zero
ES-UV-ABBR = ESQ-UV-ABBRR
ES-DATA-ITEM = ESQ-DATA-ITEMR
ES-VE-USED = zero
ES-VALUE-ENTRYs 1 through 5 = blank
ES-SORT-SEQUENCE = zero
ES-SORT-DIRECTION = zero
ES-PROJECT-FLAG = N
ES-FCTN-NAME = blank
ES-FCTN-DISTINCT = blank
ES-UV-NO = ESQ-R-UV-NO
ES-DI-NO = ESQ-R-DI-NO
ES-TYPE = ESQ-R-TYPE
ES-SIZE = ESQ-R-SIZE
ES-ND = ESQ-R-ND
ES-SOURCE = G

2.2.4 Populate the current ES-CS-PTR and the
corresponding CS-ES-PTR.

12-3

DS 620341200
30 September 1990

2.2.4.1 Look at the
CSQ-ECNOR/CSQ-AUCR
combination pointed to by the
current ESQ-CS-PTR.

2.2.4.2 Scan the CS-ACTION-LIST
looking for a match between
the CSQ-ECNOR/CSQ-AUCR
combination found in the
previous step and a
CS-ECNO/CS-AUC
combination.

2.2.4.3 When a match is found,
populate both pointers.

ES-CS-PTR = CS-INDEX

CS-ES-PTR = ES-INDEX

12.5 Outputs

1. RET-STATUS

12-4

DS 620341200
30 September 1990

SECTION 13

FUNCTION CDGTN - RETRIEVE TAG NAME

This routine retrieves the entity class name and tag name

given a tag number.

13.1 Inputs

1. TAG-NO PIC S9(4) COMP.

2. EC-NO PIC S9(4) COMP.

13.2 CDM Requirements

1. E5 ATTRIBUTEUSECL

2. E142 ENTITYNAME

13.3 Internal Requirements

None

13.4 Processing

1. Process the following single row SQL select.

Select A. TAGNAME,
E. EC NAME

From ATTRIBUTE USE CL A,
ENTITY NAME E

Where E. EC NO = A. EC NO AND
E. ECNAME TYPE = 'PRIMARY' AND
A. TAGNO = :TAG-NO

2. If the select is unsuccessful, perform standard error
processing.

13.5 Outputs

1. TAG-NAME PIC X(30)

2. EC-NAME PIC X(30)

3. RET-STATUS PIC X(5)

13-1

DS 620341200

13.5 Outputs

1. TAG-NAME PIC X(30)

2. EC-NAI4E PIC X(30)

3. RET-STATUS PIC X(5)

13-2

DS 620341200
30 September 1990

SECTION 14

FUNCTION CDPBL - POPULATE BOOLEAN LIST

For type 1 referential integrity and key uniqueness tests,
this routine builds a complete boolean list. For selects,
modifys, deletes and type 2 referential integrity tests, this
routine populates BL-CSQ-PTRs and BL-CS-PTRs.

14.1 Inputs

1. ES-QUALIFY-LIST

2. CS-QUALIFY-LIST

3. CS-ACTION-LIST

14.2 CDM Requirements

None

14.3 Internal Requirements

None

14.4 Processing

1. If processing a type 1 referential integrity test or
a key uniqueness test (CS-ACTION equals 1 or K)
perform the following steps:

1.1 Set BL-USED to zero.

1.2 Scan the CS-QUALIFY-LIST looking for all used
entries which have CSQ-ECNOR equal zero.

1.3 For each such CS-QUALIFY entry found, populate
two new rows of the BOOLEAN-LIST.

1.3.1 BL-USED = BL-USED + 1

1.3.2 If BL-USED is greater than BL-MAX,
generate an appropriate error message
and exit.

1.3.3 Set BL-INDEX to BL-USED.

1.3.4 BL-OP = blank
BL-ESQ-PTR = zero
BL-CSQ-PTR = CSQ-INDEX
BL-EVAL-FLAG = zero

1.3.5 Search the CS-ACTION-LIST lookinv for a
CS-ECNO/CS-AUC combination matching the
current CSQ-ECNOL/CSQ-AUCL combination.
When found:

14-1

DS 620341200

30 September 1990

BL-CS-PTR = CS-INDEX

1.3.6 BL-USED = BL-USED + 1

1.3.7 If BL-USED is greater than BL-MAX,
generate an error message and exit.

1.3.8 Set BL-INDEX to BL-USED.

1.3.9 BL-ESQ-PTR = ZERO
BL-CSQ-PTR = ZERO
BL-CS-PTR = ZERO
BL-EVAL-FLAG = ZERO
BL-OP = "AND"

1.3.10 Exit the program.

2. If processing a select, modify or type 2 referential
integrity test, fill in all used BL-CSQ-PTRs and
BL-CS-PTRs with BL-ESQ-PTR not equal zero.

2.1 BL-CSQ-PTR = ESQ-CS-PTR (BL-ESQ-PTR)

2.2 Scan the CS-ACTION-LIST attempting to match a
CS-ECNO/CS-AUC combination with the
CSQ-ECNOL/CSQ-AUCL combination pointed to by
BL-CSQ-PTR. When the match is found:

BL-CS-PTR = CS-INDEX

2.3 Exit the program.

3. If processing an insert (CS-ACTION equals I), exit the
program.

14.5 Output

1. BOOLEAN-LIST

2. RET-STATUS

14-2

DS 620341200
30 September 1990

SECTION 15

FUNCTION PRE5 - DECOMPOSE CS NDML

The CS NDML Decomposer is a precompile-time module whose
purpose is to break down a CS NDML Transaction into its various
IS NDML Subtransactions. Each Subtransaction accesses only one
database, managed by one DBMS, at one computer. If it is a
retrieval request, its result is a single relation. Each
Subtransaction to a non-relational database will be passed to
the IS Access Path Selector (PRE6), which determines the
necessary path to traverse the local Internal Schema.

The Decomposer maps from CS attribute use classes to IS
counterparts, and passes CS/IS transform information to the
Request Processor Generator (PRE9). It builds a SET-TABLE,
which will be input to the IS Access Path Selector (PRE6). The
SET-TABLE describes IS record sets that must be accessed in
processing the request.

For retrieval requests, the Decomposer also generates a Join
Query Graph (JQG) and Result Field Table (RFT) which will be
input to the Distributed Request Supervisor configuration item
to determine the best sequence of joins, unions, and OUTER JOIN
operations to combine the results of the Subtransactions. The
JQG and RFT are also input to the Call and Message Builder
(PREI0).

The CS NDML Decomposer performs the following:

1. It maps all CS attribute use classes, entity classes,
and relation classes referenced by the transaction to
IS counterparts, determining the database locations of
all attribute use classes involved.

This includes identification of CS entities that
participate in IS unions and IS horizontal partitions.
An IS union occurs when multiple CS entity classes map
to the same IS record type without being joined
through a relation class. An IS horizontal partition
occurs when a CS entity class maps to multiple IS
record types, with the distribution of entity
instances determined by values of one or more CS
attribute classes.

2. It identifies all unions, intra-database joins,
inter-database joins, and OUTER JOIN operations in the
transaction.

3. It reformats the orivinal transaction into single
database Subtransactions, each of which accesses one
database. If the Subtransaction is a retrieval, it
results in a single relation (i.e., table). It
provides a unique name for each result relation.

15-1

DS 620341200
30 September 1990

4. It creates a Join Query Graph (JQG) to record the
joins, unions, and OUTER JOIN operations necessary to
complete the transaction.

5. It creates a Result Field Table (RFT) to record the
fields that will comprise the answer to a retrieval
transaction.

15.1 Inputs

1. CDM Metadata

The entity classes needed are:

ENTITY CLASS CDM TABLE ENTITY NUMBER

ATTRIBUTE USECL AUC E5
AUC IS MAPPING AUCISM El08
AUC STMAPPING AUCSM E135
COMPLEXMAPPINGPARM AUCPARM E254

CON PARM E255
RT PARM E256
DF PARM E257

DATA BASE F/DB E24
DATAFIELD DF E67

EDF E119
RDF E106
CDF E9
OCC DEP DF E106
INDEX DF E83
FILLER DF E38

DATA FIELD USAGE DFU E300
DB PASSWORD PWD E25
DBMS DMS E23
DBMSONHOST DBH E20
DISTRIBUTEDRULES DR
ECRTUD ECRTUD E204, E205
ENTITY CLASS EC El
HORIZONTAL PART HP-FRAG E212
INHERITED ATT USE IAC E7
KEY CLASS-MEMBER KCM E6
MODULE PARAMETER PARM E59
PROJECTDATAFIELD AUCDF El08
RC BASED REC-SET RCSM E109
RECORDSET RS E72
RECORD SET USAGE RSU E299
RECORD TYPE RT E66
SCHEMA NAMES SCH E14
SET TYPE MEMBER RSM E72
USERDEFDATATYPE UDDT E233, E234,

E235

2. The NDML conceptual schema request to be transformed.

This is output from the Transform ES/CS function PRE4
and includes:

15-2

DS 620341200
30 September 1990

CS-ACTION-LIST
CS-QUALIFY-LIST
BOOLEAN-LIST

3. The following tables and lists that are simply passed on
to other modules:

ES-ACTION-LIST from PRE4 to PRE8, PRE10
ES-QUALIFY-LIST from PRE4 to PRE10
UV-ABBR-LIST from PRE4 to PRE8
CODE-GENERATOR-TABLE from PRE12 to PRE13
FORTRAN-VARIABLE-TABLE from PRE2 to PRE10

15.2 Processing

1. Initialize all local tablrs Rnd output lists. If CS-ACTION
is a value other than 'S' or 'I' or '2' or 'K' or 'I' or
'M' or 'D' or 'Q' go to Step 15. Otherwise, fill in
IS-LOCK = CS-LOCK and IS-NDML-NO = CS-NDML-NO.

2. If CS-ACTION = 'S' or 'I' or '2' or 'K' or 'Q' or 'M' or
'I' or 'D' transform each CS-ACTION-LIST entry by doing the
following:

2.a Retrieve information about the entity being mapped.
Access the CDM table Distributed Rules (DR) to
determine the retrieval and update rules. Also access
the CDM table HORIZONTAL PART to determine if the
entity is horizontally partitioned.

Select the AUC-IS mappings to use based on the
retrieval or update rules.

2.a.l If CS-ACTION = 'S' or 'Q' and RETRIEVAL-RULE =
"AR", select the mappings to local databases with
the same HOST where the AP will run. Find all the
entries with AUCNO = CS-AUC and HOST-ID = host and
MAP-CATEGORY = "ACTIVE" where the AP will run.

Access CDM tables F/DB, RT and AUCISM to select an
entry with the lowest preference number, i.e.
closest to 1. If an entry is found, populate the
AUCISM-LIST with the AUC-NO, DB-ID, RT-ID, PREF-NO
and MAP-TYPE and proceed to Step 2.a.4. If no
entry is found, proceed at Step 2.a.2 to select the
first preference mapping.

2.a.2 If CS-Action = 'S' or 'Q' and RETRIEVAL-RULE = "AR"
and no mapping on host found in Step 2.a.l
or CS-Action = 'S' or 'Q' and RETRIEVAL-RULE = "DR"
or Cs-Action = 'I' or '2' or 'K'
or CS-Action = 'I' or 'M' or 'D' and UPDATE-RULE =
"DU" select the primary AUC-IS Mapping. Find an
entry with AUCNO = CS-AUC.

Access CDM tables F/DB, RT and AUCISM to select
this entry. If an entry is found with PREF-NO = 1,

15-3

DS 620341200
30 September 1990

populate the AUCISM-LIST with the AUC-NO, DB-ID,
RT-ID, PREF-NO and MAP-TYPE, and continue at Step
2.a.4. If an entry is found with PREF-NO > 1,
reject the NDML statement. (The AUC does not have a
primary mapping and cannot be handled by this
version of the precompiler). If an entry is not
found, the AUC is a phantom and must be dealt with
at Step 2.a.3, but if CS-Action = 'I' or 'M' or
'D', reject the NDML statement (update of phantoms
not supported).

2.a.3 Transform phantoms which do not map directly to the
internal schema. Find the parent AUC (KCM-TAG-NO)
of this AUC, along with the relation class (RC-NO)
thru which this AUC was inherited. Access CDM
tables IAC and AUC to find an entry where CS-AUC =
inherited tag (KCM-TAG-NO). If no entry is found,
reject the NDML statement. The AUC does not have a
corresponding IAC. This AUC is not mapped and
cannot be handled by the precompiler.

If an entry is found,

a) Find any relation class to set mappings for the
RC-NO found earlier and populate the SET-TABLE.
Access CDM tables RCSM, RS and RSM to find entries
with the same RC-NO found in Step 2.a.3. For each
entry found, populate the SET-TABLE with no
duplication, with the DB-ID, SET-ID, OWNER-RTID and
MEMBER-RTID.

b) Using CS-AUC = KCM-TAG-NO found in Step 2.a.3,
return to Step 2.a.l to find the AUC-IS mapping for
the owner of the phantom AUC.

2.a.4 Determine if the AUC-IS mapping selected is in a
fragment of a horizontal partition. If the entity
is horizontally partitioned, and CS-ACTION = 'I' or
'M' or 'D', reject the NDML statement. (Update
actions are not supported for horizontally
partitioned entities since the current version of
the precompiler does not handle distributed
update). If any other action, select the
corresponding mapping of all other fragments also.
Using the AUCISM-LIST entry populated in Step 2.a.1
or 2.a.2, access the CDM tables HP-FRAG, AUCISM and
RT to select all the other fragments of the
partition. For each entry found, populate the
AUCISM-LIST with the TAG-NO, DB-ID, RT-ID, PREF-NO
and MAP-TYPE. Exit Step 2a.

2.a.5 If CS-Action = 'I' or 'M' or 'D' and UPDATE-RULE =
"AU" (attempt non-guaranteed distributed update)
Select all preference AUC-IS Mappings where AUCNO =
CS-AUC.

2.a.6 Continue populating the AUCISM list with all other
preference mappings of this AUC, if any, that were
not selected in Step 2.a.l or 2.a.2 or 2.a.4.

15-4

DS 620341200
30 September 1990

These AUC-IS mappings would possibly be used to
record inter-subtransaction Joins. They will not
be used to build IS-ACTION-ENTRYs. Flag these
entries accordingly. Exit Step 2.a.

2.1 Transform AUCs to data fields.

For each AUCISM entry from Step 2.a.l or 2.a.2 and 2.a.3, if
MAP-TYPE = "FIELD":

2.1.1 Find the AUC to Data Field Mapping, and build an
IS-ACTION-ENTRY. Access the CDM tables AUCDF and DF to
retrieve information about the datafield. Using the
DB-ID, RT-ID and TAG-NO of the AUCISM-LIST entry, find
the DF-ID, DF-NO, NUM-OCCURS, DBMS-ACCESS, INDEX-IND,
COMP-OF-DFNO, INDEX-BY-DFNO and DATA-TYPE-NAME.

2.1.2 Build an IS-ACTION-ENTRY as follows:

IS-ACTION = CS-ACTION
IS-DBID = DBID of AUCDF's key
IS-RTID = RTID of AUCDF's key
IS-DFID = DFID of AUCDF's key
IS-LOCAL-VARIABLE = CS-LOCAL-VARIABLE
IS-MAPPED-TO-FLAG = 1y1
IS-CS-PTR = CS-ACTION-LIST index
IS-FCTN-NAME = CS-FCTN-NAME
IS-FCTN-DISTINCT = CS-FCTN-DISTINCT
IS-SOURCE = CS-SOURCE
IS-DF-KNOWN-FLAG = DBMS-ACCESS
IS-DF-OCCURS = NUM-OCCURS

2.1.3 If the DATA-TYPE-NAME retrieved is NULL, implying a
group data field (i.e. not an elementary data field)
populate the IS-ACTION-ENTRY with the CS-ACTION entry's
data type, size and decimal specification.

IS-DATA-TYPE = CS-TYPE
IS-SIZE = CS-SIZE
IS-ND = CS-ND

If a DATA-TYPE-NAME is retrieved, access the CDM table
UDDT to retrieve the DATA-TYPE, SIZE and ND.

IS-DATA-TYPE = DATA-TYPE
IS-SIZE = SIZE
IS-ND = ND

2.1.4 Check for mappings to repeatinq data fields, indexes or
components of repeating data fields

2.1.4a Check for mappings to indexes for repeating
data fields. IF INDEX-IND = "G" (implying it is
a generated index) Set IS-DF-REPEAT-FLAG = 'I'
Continue at Step 2.1.5 A generated index cannot
be a repeating field.

15-5

DS 620341200
30 September 1990

IF INDEX-IND = 'Y' (implying it is an index)
Set IS-DF-REPEAT-FLAG = 'I'
Continue a Step 2.1.5 A user specified index
cannot be a repeating field.

2.1.4b Check for mapping to repeating data fields and
components of repeating data fields.

IF IS-DF-OCCURS = 1 and COMP-OF-DF = "NULL"
SET IS-DF-REPEAT-FLAG = N
Continue at Step 2.1.5

2.1.4c At this point, the field is a repeating field, a
component of a repeating data field or a
component of a non-repeating field.

Using a recursive search against CDM table DF,
record the levels of repeating data fields in
the TEMP-OCCURS-TABLE.

2.1.4d If it is determined that no field repeats in the
recursive search:

SET IS-DF-REPEAT-FLAG = "C" stating the AUC is
mapped to a component of a repeating or
non-repeating data field.
Continue at Step 2.1.5

Else

SET IS-DF-REPEAT-FLAG = "Y" stating the AUC is
mapped to a repeating data field or a component
of a repeating data field. This component
structure is stored in TEMP-OCCURS-TABLE and
will be referenced later in Step 12.1.
Continue at Step 2.1.5

2.1.5 Record other AUC-DF mappings for possible use in
inter-subtransaction joins. If CS-ACTION = 'I', ignore
this step because insert action does not build an
IS-QUALIFY list. Continue at Step 2.3. If the entity
is horizontally partitioned, ignore this step since it
is not meaningful to join across record types of a
horizontally partitioned entity, because no rows of data
would meet this qualification.

Find all the KCM (E6) entries with AUCNO = CS-AUC. If
none are found, this AUC is not a key class member and
therefore cannot be used for joining subtransaction
results; ignore this step.

For each remaining AUCISM-LIST entry for which an
IS-ACTION entry was NOT built and if one or more KCM
entries are found, proceed as follows:

if IS-DF-REPEAT-FLAG = N
(NUM-OCCURS = 1 and
INDEX-IND = 'N' and
COMP-OF-DF = ZEROS)

15-6

DS 620341200
30 September 1990

Build the REPL-JOIN-LIST, TEMP-KEY-LIST and

KEY-JOIN-LIST

Else

Continue at Step 2.2

2.1.5.1 Fill in a REPL-JOIN-LIST entry:

RJ-DBID = DBID of AUCDF's key
RJ-RTID = RTID of AUCDF's key
RJ-DFID = DFID of AUCDF's key
RJ-TYPE = DATATYPE of the DF
RJ-SIZE = SIZE of the DF
RJ-ND = ND of the DF
RJ-PTR = IS-ACTION-LIST index
for the entry filled
in Step 2.1.2
RJ-PTR-TYPE = 1
RJ-OK =s'

2.1.5.2 Find the TEMP-KEY-LIST entries with TK-AUCNO =
AUCNO of the KCM (E6). For each, set
TK-REF-FLAG = 'Y'.

2.1.5.3 If no TEMP-KEY-LIST entries were found in
Step 2.1.5.2, find the KCM (E6) entries with
the same KCNO as the KCM (E6) entry found in
Step 2.1.5.

Fill in a TEMP-KEY-LIST entry for each of these
KCM (E6):

TK-KCNO = KCNO of KCM
TK-AUCNO = AUCNO of KCM
TK-REF-FLAG = 'N' for each of the KCM

entries except the on
found in Step 2.1.where
TK-REF-FLAG = '¥'

2.1.5.4 Fill in a KEY-JOIN-LIST entry for each
possible pair of a REPL-JOIN-LIST entry created
in Step 2.1.5.1 and a TEMP-KEY-LIST entry
created in Step 2.1.5.3:

KJ-TK-PTR = TEMP-KEY-LIST index
KJ-RJ-PTR = REPL-JOIN-LIST index

2.2 Transform AUCs to record sets.

For each AUCISM entry from Step 2.a.1 or 2.a.2 and 2.a.3 if
MAP-TYPE = "SET":

2.2.1 Access the CDM tables AUCSM, RS, RSM and RT to retrieve
information about the set and set values. Using the
DB-ID, RT-ID and TAG-NO of the AUCISM-LIST entry, find
the SET-ID, RT-ID of member, RT-ID of owner,
TOTAL-NUM-MEMBERS and AUC-VALUES.

15-7

DS 620341200
30 September 1990

2.2.2 Fill in an IS-ACTION-LIST entry for the AUCSM (E135)
entry found in Step 2.2.1:

IS-ACTION = CS-ACTION
IS-DBID = DBID of AUCSM's key
IS-NUM-RS = number of located AUCSMs
IS-RSNO (i) = RSNO of i-th AUCSM's key
IS-RS-VALUE (i) = EQUIVALENT-AUC-VALUE

in i-th AUCSM
IS-LOCAL-VARIABLE = CS-LOCAL-VARIABLE
IS-MAPPED-TO-FLAG = 'y'
IS-CS-PTR = CS-ACTION-LIST index
IS-FCTN-NAME = CS-FCTN-NAME
IS-FCTN-DISTINCT = CS-FCTN-DISTINCT
IS-DF-REPEAT-FLAG = 'N'
IS-DF-OCCURS = 1

2.2.3 Fill in a SET-TABLE entry for the AUCSM (E135) entry
found in Step 2.2.1:

ST-DBID = DBID of AUCSM's key
ST-RSNO = RSNO of AUCSM's key

Note: If there is already a SET-TABLE entry with this
ST-DBID and ST-RSNO, do not duplicate it.

RS-MEMBER (i) = RTNO of RSM's key

Set the value of ST-NUM-MEMBERS correctly in order to
manage the repeating group.

ST-OWNER = OWNER-RTNO in RS
ST-TOTAL-MEMBERS = TOTAL-NUM-MEMBERS in RS

2.3 Transform AUCs using complex mapping algorithms.

For each AUCISM entry from Step 2.a.l or 2.a.2 and 2.a.3
for MAP-TYPE = "COMPLEX" set up the algorithm direction:

IF CS-ACTION = "I" or "M"
CS-IS-ALG-USE-CODE = "U"
Else
CS-IS-ALG-USE-CODE = "R"

Determine if the algorithm transforms from AUC(s) to
datafields(s) (DF-PARM) or from AUC(s) to an entire
record (RT-PARM).

2.3.1 First find the AUC-PARM entry with the same AUC-NO as
the AUCISM-LIST entry, and the CS-IS-ALG-USE-CODE.
Usinq the MOD-ID, MOD-INSTANCE and ALG-USE-CODE
retrieved from the AUC-PARM entry and the DB-ID, RT-ID
of the AUCISM-LIST entry, access the CDM tables CMA and
DF to determine if the AUC maps to datafield(s).

If no entry is found, access the CDM tables CMA and RT
to determine if the AUC maps to a record type.

15-8

DS 620341200
30 September 1990

If the AUC does not map to either, reject the NDML
statement (mapping not found). Exit Step 2.3.

2.3.2 Access the CDM table CMA using the MOD-ID, MOD-INSTANCE
and ALG-USE-CODE to retrieve all the parameters of this
complex mapping algorithm. Populate the CMA-ALG-ENTRY.

CMA-MOD-ID = MOD-ID
CMA-MOD-INST = MOD-INST
CMA-RETR-UPD = ALG-USE-CODE

For each parameter retrieved:

2.3.3 Access the CDM tables PARM and UDDT to retrieve the
parameters DATA-TYPE, SIZE and ND. Populate the
CMA-PARM-ENTRY.

CMA-PARM-TYPE = DATA TYPE
CMA-PARM-SIZE = SIZE
CMA-PARM-ND = ND

2.3.4 If the parameter is an AUC-PARM (attribute use class):
CMA-TAG-NO = AUCNO retrieved

If the parameter is a CONST-PARM (constant):
CMA-CONST-VAL = CONSTANT-VALUE retrieved

If the parameter is a RT-PARM (record):
CMA-RT-NO = RT-NO retrieved, also populate the
CMA-DF-ENTRY with information about all the elementary
datafields of this record, along with the type, size and
decimal specification of each datafield. Access CDM
tables DF and UDDT using the RT-NO parameter.

If the parameter is a DF-PARM (data field):
CMA-DF-NO = DF-NO retrieved
CMA-RT-NO = RT-NO of DF-NO retrieved
Also, retrieve the data type, size and decimal
specification of the datafield by accessing the CDM
tables DF and UDDT. If the datafield is not elementary,
issue a warning and set
CMA-DF-TYPE = DATATYPE of PARM (CMA-PARM-TYPE)
CMA-DF-SIZE = SIZE of PARM (CMA-PARM-SIZE)
CMA-DF-ND = ND of PAPM (CMA-PARM-ND)
Else
CMA-DF-TYPE = TYPE of DF
CMA-DF-SIZE = SIZE of DF
CMA-DF-ND = ND of DF

Note: An AUC can map to either a record or to
datafield(s) through a complex mapping algorithm, but
not both.

2.3.5 Record the complex mapping algorithm that must be used.

Build an IS-ACTION-ENTRY for the AUC-PARM entry from
Step 2.1.2 as follows:

15-9

DS 620341200
30 September 1990

IS-ACTION = CS-ACTION
IS-DBID = DBID in the AUC-PARM entry
IS-RTID = RTNO in the AUC-PARM entry
IS-DFNO = blank
IS-MAP-ALG-ID = MOD-ID in the AUC-PARM entry
IS-MAP-ALG-PTR = index value of the
CMA-ALGORITHM-ENTRY
from Step 2.3.3
IS-PARM-NO = PARM-NO from Step 2.3.1
IS-LOCAL-VARIABLE = CS-LOCAL-VARIABLE
IS-MAPPED-TO-FLAG = eye
IS-CS-PTR = CS-ACTION-LIST index
IS-FCTN-NAME = CS-FCTN-NAME
IS-FCTN-DISTINCT = CS-FCTN-DISTINCT
IS-DF-REPEAT-FLAG = 'N'

2.4 Fill in the TEMP-RECORD-TABLE as follows:

If CS-Action = "I" or "D"

Scan the IS-ACTION-LIST, making an TRT-LIST entry for
each distinct IS-DBID or IS-RTNO encountered:

TRT-DBNO = IS-DBID
TRT-RTNO = IS-RTNO
TRT-ECNO = CS-ECNO

If there is already a TRT-LIST entry for a TRT-DBID or
TRT-DBID or TRT-RTNO, do not duplicate the entry.

Note: If IS-ACTION = "DELETE", consider only those
entries where CS-SOURCE not = "G" (generated).
CS-SOURCE is "G" for CS-QUALIFY AUC entries from the
"USING" clause of a DELETE statement, which were moved
to the CS-ACTION.

3. If CS-ACTION = 'I' or 'D' or 'M' continue processing the
IS-ACTION-LIST as follows.

3.1 Determine that if more than one tag participates in a
complex mapping algorithm, all tags are mentioned
in the CS-ACTION-LIST.

Search the CS-ACTION-LIST using all tags in the
COMPLEX-MAPPING-ALG-TBL, looking for a match. If a
match is not found, reject the NDML statement (not all
parameters for the complex mapping algorithm are
specified on the NDML statement).

3.2 Fetch all the elementary datafields for the record being
inserted or deleted. These datafields will be marked as
'NOT-MAPPED-TO'. For an insert action, NULLS will be
inserted for these fields. For a delete action, the
record will be modified with nulls being placed in the
'MAPPED-TO' fields. For each entry in the
TEMP-RECORD-TABLE, if CS-ACTION = INSERT or CS-ACTION =
DELETE:

15-10

DS 620341200
30 September 1990

3.2.1 Find the elementary datafield (EDF) entries with the

same DBID and RTNO as the TRT-LIST entry.

3.2.2 For each of the DF (E67) entries found in Step 3.2.1:

3.2.2.1 If this elementary field is not known to the DBMS,
(DBMS-ACCESS-FLAG = Unknown), continue with the next
iteration of Step 3.2.2.

3.2.2.2 If there exists an IS-ACTION-LIST
entry with:

IS-DBID = DBID of the DF
IS-RTNO = RTNO of the DF
IS-DFNO = DFNO of the DF

or this field is a component of an insert or delete
field (component data field number matches an entry in
the IS-ACTION-LIST), or this field is a redefinition
of an insert or delete field (redefines data field
number matches an entry in the IS-ACTION-LIST),
then continue with the next iteration of Step 3.2.2.

3.2.2.3 If there exists a CMA entry for this datafield with

CMA-DBID = DBID of the DF
CMA-RTNO = RTNO of the DF
CMA-DFNO = DFNO of the DF
(CMA-DFNO is filled in for a DF-PARM)
or
CMA-DBID = DBID of the DF
CMA-RTNO = RTNO of the DF
CMA-DFNO = ZERO (CMA-DFNO is zero
for a RT-PARM)

or
this field is a component of an insert or delete field
(redefines data field number matches an entry in the
COMPLEX-MAPPING-TABLE)

or
this field is a redefinition of an insert or delete
field (redefines data field number matches an entry in
the COMPLEX-MAPPING-TABLE)

then continue with the next iteration of Step 3.2.2.

3.2.2.4 Fill in an IS-ACTION-LIST entry for this elementary
data field as follows:

IS-ACTION = CS-ACTION used in Step 3.2
IS-DBID = DBID of the DF
IS-RTNO = RTNO of the DF
IS-DFNO = DFNO of the DF
IS-TYPE = DATA TYPE of the DF
IS-SIZE = SIZE of the DF
IS-ND = ND of the DF
IS-LOCAL-VARIABLE = blank
IS-MAPPED-TO-FLAG = 'N'

15-11

DS 620341200
30 September 1990

IS-CS-PTR = zero
IS-FCTN-NAME = blank
IS-FCTN-DISTINCT = blank
IS-DF-KNOWN-FLAG = DBMS accessible Data Field

indicator of the DF
IS-CS-PTR = 0
IS-SOURCE = 'G'

3.2.2.5 If this field does not repeat, nor is a component of
another field: if NUM-OCURS = 0 and
COMP-OF-DF = 0 then SET IS-DF-REPEAT-FLAG = 'N' and
continue with the next iteration of Step 3.2.2.

3.2.2.6 Determine if this field repeats or is part of a
repeating group or is a non-repeating component.

3.2.2.6.1 If the field repeats or is part of a repeating group,
build a TEMP-OCCURS-TABLE recording the component
chain. Also, set IS-DF-OCCURS-FLAG = 'Y'.

3.2.2.6.2 If the field is a non-repeating component set
IS-DF-OCCURS-FLAG = 'C'

4. Provide union discriminator values for INSERTs.

If CS-ACTION = 'I', for each unique pair of IS-DBID and
IS-RTNO find all the ECRTUD (E205) entries with:

ECNO = CS-ECNO in any CS-ACTION-ENTRY
(all CS-ECNOs are identical for an

DBID = IS-DBID
RTNO = IS-RTNO

If no such ECRTUD entries are found, none of the
record types result from the union of entity classes
and the rest of Step 4 can be ignored.

For each ECRTUD entry found, determine the comparison
operator. If any operator from the ECRTUD entry is
not =, >=, or <=, reject the NDML statement (operator
not supported for an insert of a record type
resulting from the union of entity classes).

For each ECRTUD entry found:

4.1 Start an IS-ACTION-LIST entry:

IS-ACTION = CS-ACTION
IS-DBID = DBID from the ECRTUD entry
IS-RTNO = RTNO from the ECRTUD entry
IS-DFNO = DFNO from the ECRTUD entry
IS-LOCAL-VARIABLE = generated local variable

containing UNION-VALUE
from the ECRTUD entry

IS-MAPPED-TO-FLAG = IY'
IS-CS-PTR = zero
IS-FCTN-NAME = blank

15-12

DS 620341200
30 September 1990

IS-FCTN-DISTINCT = blank
IS-DF-REPEAT-FLAG = 'N'
IS-DF-OCCURS = 1
IS-DF-KNOWN = sY'
IS-DF-REPEAT-FLAG = 'N'
IS-SOURCE = IG,

4.2 Access the CDM tables DF and UDDT to retrieve the DATATYPE,
SIZE and ND of the datafield.

IS-DATA-TYPE = DATATYPE of DF
IS-SIZE = SIZE of DF
IS-ND = ND of DF

5. If CS-ACTION = IS' or 'I' or '2' or IKI or IQ' or 'H' or
'D', transform each CS-QUALIFY-LIST entry. Perform Steps
5.a thru 5.4 to transform the CS-QUALIFY left side.

Perform Steps 5.5 thru 5.9 to transform the CS-QUALIFY
right side. Proceed as follows:

5.a Select the AUC-IS mapping(s) to use. For each CSQ-AUCL Set
CSQ-AUC = CSQ-AUCL

5.a.1 Select all preference mappings for this AUC. Find an
entry with AUCNO = CSQ-AUC.

Access CDM tables F/DB, RT and AUCISM to select all
entries where MAP CATEGORY = ACTIVE, ordered by PREF-NO.
For each entry found populate the AUCISM-LIST with the
AUC-NO, DB-ID, RT-ID, PREF-NO and MAP-TYPE. Also,
populate variable AUCISM-FLAG. For all preference one
mappings or if IS-ACTION = "M" or "D", set the flag
equal to "IS". Otherwise, set the flag equal to "RJ."
If no entry is found with PREF-NO = 1, reject the NDML
statement since the AUC does not have a primary mapping
and cannot be handled by this version of the
precompiler. If an entry is not found, the AUC is a
phantom and must be dealt with at Step 5.a.2, but if
CS-ACTION = 'I' or 'H' or 'D', reject the NDML statement
since update of phantoms is not supported.

5.a.2 Transform phantoms which do not map directly to the
internal schema. Find the parent AUC (KCM-TAG-NO) of
this AUC, along with the relation class (RC-NO) through
which this AUC was inherited. Access CDM tables IAC and
AUC to find an entry where CSQ-AUC = inherited tag
(KCM-TAG-NO). If no entry is found, reject the NDML
statement since the AUC does not have a corresponding
IAC. This AUC is not mapped and cannot be handled by
the precompiler. If an entry is found:

a) Find any relation class to set mappings for the
RC-NO found earlier and populate the SET-TABLE.
Access CDM tables RCSM, RS and RSM to find entries
with the same RC-NO found in Step 5.a.2. For each
entry found, populate the SET-TABLE using no
duplications, with the DB-ID, SET-ID, OWNER-RTID and
MEMBER-RTID.

15-13

DS 620341200
30 September 1990

b) Using CSQ-AUC = KCM-TAG-NO found in Step 5.a.2,
return to Step 5.a.l to find the AUC-IS mapping for
the owner of the phantom AUC.

5.1 Transform AUCs to data fields.

For each AUCISM entry from Step 5.a where MAP-TYPE =
"FIELD" and AUCISM-FLAG = "IS", perform steps 5.1.1
through 5.1.4. For each entry where MAP-TYPE = "FIELD"
and AUCISM-FLAG = "RJ", perform step 5.1.5.

5.1.1 Find the AUC to Data Field Mapping and build an
IS-QUALIFY-ENTRY.

Access the CDM tables AUCDF and DF to retrieve
information about the datafield. Using the DB-ID, RT-ID
and TAG-NO of the AUCISM-LIST entry, find the DF-ID,
DF-NO, NUM-OCCURS, DBMS-ACCESS, INDEX-IND, COMP-OF-DFNO,
INDEX-BY-DFNO and DATA-TYPE-NAME.

5.1.2 Build an IS-QUALIFY-ENTRY. If this is the first entry
in the AUCISM-LIST, set ISQ-INDEX-HOLD = isq-index of
this IS-QUALIFY-ENTRY being built

ISQ-DBIDL = DBID of AUCDF's key
ISQ-RTIDL = RTID of AUCDF's key
ISQ-DFIDL = DFID of AUCDF's key
ISQ-LOCAL-VARIABLE = CSQ-LOCAL-VARIABLE
ISQ-CSQ-PTR = CS-QUALIFY-LIST index
ISQ-DFL-KNOWN-FLAG = DBMS-ACCESS
ISQ-BOOLEAN-PTR = BOOLEAN-LIST index
where
BL-CSQ-PTR = CSQ-INDEX

5.1.3 If the DATA-TYPE-NAME retrieved is NULL, implying a
group data field, not an elementary data field, populate
the IS-QUALIFY-ENTRY with the CS-QUALIFY entry's data
type, size and decimal specification.

ISQ-TYPEL = CSQ-TYPE
ISQ-SIZEL = CSQ-SIZE
ISQ-NDL = CSQ-ND

If a DATA-TYPE-NAME is retrieved, access the CDM table
UDDT to retrieve the DATA-TYPE, SIZE and ND.

ISQ-TYPEL = DATA-TYPE
ISQ-SIZEL = SIZE
ISQ-NDL = ND

5.1.4 Check for mappings to repeating data fields, indexes or
components of repeating data fields

5.1.4a IF INDEX-IND = 1Y'
set ISQ-TYPE2-SOURCE = 'I'
Continue a Step 5.1.5
A user specified index cannot be a repeating field.

15-14

DS 620341200
30 September 1990

5.1.4b Check for mapping to repeating data fields and
components of repeating data fields.

IF NUM-OCCURS = 1 and COMP-OF-DF = ZERO,
Continue at Step 5.1.5

5.1.4c At this point, the field is a repeating field or a
component of a repeating data field or simply a
component of a non-repeating field.

If it is determined that the field repeats or is part of
a repeating group, issue an error message. The current
precompiler does not support qualification of repeating
fields.

5.1.5 Record other AUC-DF mappings for possible use in
inter-subtransaction joins.

If the entity is horizontally partitioned, ignore this
step. It is not meaningful to join across record types
of a horizontally partitioned entity, since no rows of
data would meet this qualification.

Find all the KCM (E6) entries with AUCNO = CSQ-AUCL. If
none are found, this AUC is not a key class member and
therefore cannot be used for joining subtransaction
results. Ignore this step.

For each remaining AUCISM-LIST entry, if IS-QUALIFY
entries were built for a first and second preference
mapping and if one or more KCM entries are found,
proceed as follows:

if (NUM-OCCURS = 1 and
INDEX-IND = 'N' and
COMP-OF-DF = NULL)

Build the REPL-JOIN-LIST, TEMP-KEY-LIST and

KEY-JOIN-LIST

Else

Continue at Step 5.2

5.1.5.1 Fill in a REPL-JOIN-LIST entry:

RJ-DBID = DBID of AUCDF's key
RJ-RTID = RTID of AUCDF's key
RJ-DFID = DFID of AUCDF's key
RJ-TYPE = DATATYPE of the DF
RJ-SIZE = SIZE of the DF
RJ-ND = ND of the DF
RJ-PTR = IS-QUALIFY-LIST index

for the first ent-y filled in Step 5.1.2
(ISQ-INDEX-HOLD)

RJ-PTR-TYPE = 2
RJ-OK = 'Y'

15-15

DS 620341200
30 September 1990

5.1.5.2 Find the TEMP-KEY-LIST entries with TK-AUCNO = AUCNO
of the KCM (E6). For each, set TK-REF-FLAG = 'Y'.

5.1.5.3 If no TEMP-KEY-LIST entries were found in Step
5.1.5.2, find the KCM (E6) entries with the same KCNO
as the KCM (E6) entry found in Step 5.1.5.

Fill in a TEMP-KEY-LIST entry for each of these KCM
(E6):

TK-KCNO = KCNO of KCM
TK-AUCNO = AUCNO of KCM
TK-REF-FLAG = 'N' for each of the KCM

entries except the one
found in Step 5.1.5,
where TK-REF-FLAG = 'Y'

5.1.5.4 Fill in a KEY-JOIN-LIST entry for each possible pair
of one REPL-JOIN-LIST entry created in Step 5 1.5.1
and one TEMP-KEY-LIST entry created in Step 5.1.5.3:

KJ-TK-PTR = TEMP-KEY-LIST index
KJ-RJ-PTR = REPL-JOIN-LIST index

5.2 Transform AUCs to record sets.

For each AUCISM entry from Step 5.a if MAP-TYPE = "SET":

5.2.1 Access the CDM tables AUCISM, RS, RSM and RT to retrieve
information about the set and set values. Using the
DB-ID, RT-ID and TAG-NO of the AUCISM-LIST entry, find
the SET-ID, RT-ID of number, RT-ID of owner,
TOTAL-NUM-MEMBERS and AUC-VALUES.

5.2.2 Fill in an IS-QUALIFY-LIST entry for the AUCSM (E135)
entry found in Step 5.2.1:

ISQ-DBIDL = DBID of AUCISM's key
ISQ-NUM-RSL = number of located AUCISMs
ISQ-RSNOL (i) = RSNO of i-th AUCISM's key
ISQ-RSL-VALUE (i) = EQUIVALENT-AUC-VALUE

in i-th AUCISM
ISQ-LOCAL-VARIABLE = CSQ-LOCAL-VARIABLE
ISQ-CSQ-PTR = CS-QUALIFY-LIST index
ISQ-OP = CSQ-OP
ISQ-BOOLEAN-PTR = BOOLEAN-LIST index where
BL-CSQ-PTR = CSQ-INDEX

5.2.3 Fill in a SET-TABLE entry for the AUCSM (E135) entry
found in Step 5.2.1:

ST-DBID = DBID of AUCSM's key
ST-RSNO = RSNO of AUCSM's key

Note: If there is already a SET-TABLE entry with this
ST-DBID, ST-RSNO, do not duplicate it.

RS-MEMBER (i) = RTNO of RSM's key

15-16

DS 620341200
30 September 1990

Set the value of ST-NUM-MEMBERS correctly to manage the
repeating group.

ST-OWNER = OWNER-RTNO in RS
ST-TOTAL-MEMBERS = TOTAL-NUM-MEMBERS in RS

5.3 Transform AUCs using complex mapping algorithms.

For each AUCISM entry from Step 5.a for MAP-TYPE =
"COMPLEX" set up the algorithm direction:

CS-IS-ALG-USE-CODE = "R"

Note: Since qualification conditions involving algorithms
can only be evaluated at the CS level, the retrieval
version of the algorithm is always obtained for ISQ
entries.

Determine if the algorithm transforms from AUC(s) to
datafield(s) (DF-PARM) or from AUC(s) to an entire record
(RT-PARM).

5.3.1 First find the AUC-PARM entry with the same AUC-NO as
the AUCISM-LIST entry, and the CS-IS-ALG-USE-CODE.
Using the MOD-ID, MOD-INSTANCE and ALG-USE-CODE
retrieved from the AUC-PARM entry and the DB-ID, RT-ID
of the AUCISM-LIST entry, access the CDM tables CMA and
DF to determine if the AUC maps to datafield(s).

If no entry is found, access the CDM tables CMA and RT
to determine if the AUC maps to a record type.

If the AUC does not map to either, reject the NDML
statement (mapping not found). Exit Step 5.3.

5.3.2 Access the CDM table CMA using the MOD-ID, MOD-INSTANCE
and ALG-USE-CODE to retrieve all the parameters of this
complex mapping algorithm. Populate the CMA-ALG-ENTRY.

CMA-MOD-ID = MOD-ID
CMA-MOD-INST = MOD-INST
CMA-RETR-UPD = ALG-USE-CODE

For each parameter retrieved:

5.3.3 Access the CDM tables PARM and UDDT to retrieve the
parameters DATA-TYPE, SIZE and ND. Populate the
CMA-PARM-ENTRY.

CMA-PARM-TYPE = DATA TYPE
CMA-PARM-SIZE = SIZE
CMA-PARM-ND = ND

5.3.4 If the parameter is an AUC-PARM:
CMA-TAG-NO = AUCNO retrieved

If the parameter is a CONST-PARM:
CMA-CONST-VAL = CONSTANT-VALUE retrieved

15-17

DS 620341200
30 September 1990

If the parameter is a RT-PARM:
CMA-RT-NO = RT-NO retrieved
Also, populate the CMA-DF-ENTRY with information about
all the elementary datafields of this record, along with
the type, size and decimal specification of each
datafield. Access CDM tables DF and UDDT using the
RT-NO parameter.

If the parameter is a DF-PARM:
CMA-DF-NO = DF-NO retrieved
CMA-RT-NO = RT-NO of DF-NO retrieved
Also, retrieve the data type, size and decimal
specification of the datafield by accessing the CDM
tables DF and UDDT. If the datafield is not elementary,
issue a warning and set

CMA-DF-TYPE = DATATYPE of PARM (CMA-PARM-TYPE)
CMA-DF-SIZE = SIZE of PARM (CMA-PARM-SIZE)
CMA-DF-ND = ND of PARM (CMA-PARM-ND)
Else
CMA-DF-TYPE = TYPE of DF
CMA-DF-SIZE = SIZE of DF
CMA-DF-ND = ND of DF

Note: An AUC can map to either a record or to
datafield(s) but not both, through a complex mapping
algorithm

5.3.5 Record the complex mapping algorithm that must be used.

Build an IS-QUALIFY-ENTRY for the AUC-PARM entry from
Step 5.1.2 as follows:

ISQ-DBIDL = DBID in the AUC-PARM entry
ISQ-RTIDL = RTNO in the AUC-PARM entry
ISQ-DFNOL = blank
ISQ-MAP-ALG-IDL = MOD-ID in the AUC-PARM entry
ISQ-MAP-ALG-PTRL = index value of the

CMA-ALGORITHM-ENTRY
from Step 5.3.3

ISQ-PARM-NOL = PARM NO found in Step 5.3.1
ISQ-LOCAL-VARIABLE = CSQ-LOCAL-VARIABLE
ISQ-CSQ-PTR = CSQ-QUALIFY-LIST index
ISQ-OP = CSQ-OP

5.4 Fill in the TEMP-RECORD-TABLE as follows:

If IS-ACTION = 'S', 'I', '2', OR 'K'

Scan the IS-QUALIFY-LIST, making a TRT-LIST entry for each
distinct ISQ-DBIDL, ISQ-RTNOL encountered:

TRT-DBNO = ISQ-DBIDL
TRT-RTNO = ISQ-RTNOL
TRT-ECNO = CSQ-ECNOL

If there is already a TRT-LIST entry for a TRT-DBID or
TRT-RTNO, do not duplicate the entry.
Return to Step 5.1 to process the next AUCISM-ENTRY.

15-18

DS 620341200
30 September 1990

5.5 Process the right side of the CS-QUALIFY-LIST.

For each non-zero CSQ-AUCR, proceed as follows:
Set CSQ-AUC = CSQ-AUCR
Select the AUC-IS mapping(s) to use for each CSQ-AUCR by
performing Step 5.a.

5.6 Transform AUCs to data fields.

For each AUCISM entry from Step 5.a if MAP-TYPE = "FIELD"

5.6.1 Find the AUC to Data Field Mapping, and build an
IS-QUALIFY-ENTRY. Access the CDM tables AUCDF and DF to
retrieve information about the datafield. Using the
DB-ID, RT-ID and TAG-NO of the AUCISM-LIST entry, find
the DF-ID, DF-NO, NUM-OCCURS, DBMS-ACCESS, INDEX-IND,
COMP-OF-DFNO, INDEX-BY-DFNO and DATA-TYPE-NAME.

5.6.2 Build an IS-QUALIFY-ENTRY as follows:

Fill an IS-QUALIFY-ENTRY with ISQ-CSQ-PTR the same as
the entry's CS-QUALIFY-LIST index, creating a new entry
(replicating the already filled in left side) if this
CSQ-AUCR maps to more than one datafield.
If this is the first entry in the AUCISM-LIST, set
ISQ-INDEX-HOLD = isq-index of this IS-QUALIFY-ENTRY
being built

ISQ-DBIDR = DBID of AUCDF's key
ISQ-RTIDR = RTID of AUCDF's key
ISQ-DFIDR = DFID of AUCDF's key

5.6.3 If the DATA-TYPE-NAME retrieved is NULL, implying a
group data field, not an elementary data field, populate
the IS-QUALIFY-ENTRY with the CS-QUALIFY entry's data
type, size and decimal specification.

ISQ-TYPER = CSQ-TYPE
ISQ-SIZER = CSQ-SIZE
ISQ-NDR = CSQ-ND

If a DATA-TYPE-NAME is retrieved, access the CDM table
UDDT to retrieve the DATA-TYPE, SIZE and ND.

ISQ-TYPER = DATA-TYPE
ISQ-SIZER = SIZE
ISQ-NDR = ND

5.6.4 Check for mappings to repeating data fields, or
components of repeating data fields.

5.6.4a IF NUM-OCCURS = 1 and COMP-OF-DF = NULL
Continue at Step 5.6.5

5.6.4b At this point, the field is a repeating field or a
component of a repeating data field or simply a
component of a non-repeating field.

15-19

DS 620341200
30 September 1990

If it is determined that the field repeats or is part of
a repeating group, issue an error message. The current
precompiler does not support qualification of repeating
fields. Exit Step 5.

5.6.5 Record other AUC-DF mappings for possible use in
inter-subtransaction joins. If the entity is
horizontally partitioned, ignore this step. It is not
meaningful to join across record types of a horizontally
partitioned entity, since no rows of data would meet
this qualification. Find all the KCM (E6) entries with
AUCNO = CSQ-AUCR. If none are found, this AUC is not a
key class member and therefore cannot be used for
jolning subtransaction results. Ignore this step.

For each remaining AUCISM-LIST entry, if IS-QUALIFY
entries were built for a first and second preference
mapping and if one or more KCM entries are found,
proceed as follows:

if (NUM-OCCURS = 1 and
INDEX-IND = 'N' and
COMP-OF-DF = NULL)

Build the REPL-JOIN-LIST, TEMP-KEY-LIST and
KEY-JOIN-LIST

Else

Continue at Step 5.7

5.6.5.1 Fill in a REPL-JOIN-LIST entry:

RJ-DBID = DBID of AUCDF's key
RJ-RTID = RTID of AUCDF's key
RJ-DFID = DFID of AUCDF's key
RJ-TYPE = DATATYPE of the DF
RJ-SIZE = SIZE of the DF
RJ-ND = ND of the DF
RJ-PTR = IS-QUALIFY-LIST index

for the first entry filled in Step
5.6.2 (ISQ-INDEX-HOLD)

RJ-PTR-TYPE = 3
RJ-OK = Y'

5.6.5.2 Find the TEMP-KEY-LIST entries with TK-AUCNO = AUCNO
of the KCM (E6). For each, set TK-REF-FLAG = 'Y'.

5.6.5.3 If no TEMP-KEY-LIST entries were found in Step
5.6.5.2, find the KCM (E6) entries with the same KCNO
as the KCM (E6) entry found in Step 5.6.5.

Fill in a TEMP-KEY-LIST entry for each of these KCM
(E6):

15-20

DS 620341200
30 September 1990

TK-KCNO = KCNO of KCM
TK-AUCNO = AUCNO of KCM
TK-REF-FLAG = 'N' for each of the KCM entries
except the one found in Step 5.6.5, where TK-REF-FLAG
= lye

5.6.5.4 Fill in a KEY-JOIN-LIST entry for each possible pair
of one REPL-JOIN-LIST entry created in Step 5.6.5.1
and one TEMP-KEY-LIST entry created in Step 5.6.5.3:

KJ-TK-PTR = TEMP-KEY-LIST index
KJ-RJ-PTR = REPL-JOIN-LIST index

5.7 Transform AUCs to record sets.

For each AUCISM entry from Step 5.a if MAP-TYPE = "SET":

5.7.1 Access the CDM tables AUCISM, RS, RSM and RT to retrieve
information about the set and set values. Using the
DB-ID, RT-ID and TAG-NO of the AUCISM-LIST entry, find
the SET-ID, RT-ID of member, RT-ID of owner,
TOTAL-NUM-MEMBERS and AUC-VALUES.

5.7.2 Fill in an IS-QUALIFY-LIST entry for the AUCSM (E135)
entry found in Step 5.7.1:

ISQ-DBIDR = DBID of AUCISM's key
ISQ-NUM-RSR = number of located AUCISMs
ISQ-RSNOR (i) = RSNO of i-th AUCISM's key
ISQ-RSR-VALUE (i) = EQUIVALENT-AUC-VALUE

in i-th AUCISM

5.7.3 Fill in a SET-TABLE entry for the AUCSM (E135) entry
found in Step 5.7.1:

ST-DBID = DBID of AUCSM's key
ST-RSNO = RSNO of AUCSM's key

Note: If there is already a SET-TABLE entry with this
ST-DBID, ST-RSNO, do not duplicate it.

RS-MEMBER (i) = RTNO of RSM's key

Set the value of ST-NUM-MEMBERS correctly to manage the
repeating group.

ST-OWNER = OWNER-RTNO in RS
ST-TOTAL-MEMBERS = TOTAL-NUM-MEMBERS in RS

5.8 Transform AUCs using complex mapping algorithms.

For each AUCISM entry from Step 5.a for MAP-TYPE =
"COMPLEX" set up the algorithm direction.

CS-IS-ALG-USE-CODE = "R"

15-21

DS 620341200
30 September 1990

Note: Since qualification conditions involving
algorithms can only be evaluated at the CS level, the
retrieval version of the algorithm is always obtained for
ISQ entries.

Determine if the algorithm transforms from AUC(s) to
datafield(s) (DF-PARM) or from AUC(s) to an entire record
(RT-PARM).

5.8.1 First find the AUC-PARM entry with the same AUC-NO as
the AUCISM-LIST entry, and the CS-IS-ALG-USE-CODE.

Using the MOD-ID, MOD-INSTANCE and
ALG-USE-CODE retrieved from the AUC-PARM entry and the
DB-ID, RT-ID of the AUCISM-LIST entry, access the CDM
tables CMA and DF to determine if the AUC maps to
datafield(s).

If no entry is found, access the CDM tables CMA and RT
to determine if the AUC maps to a record type.

If the AUC does not map to either, reject the NDML
statement (mapping not found). Exit Step 5.8.

5.8.2 Access the CDM table CHA using the MOD-ID, MOD-INSTANCE
and ALG-USE-CODE to retrieve all the parameters of this
complex mapping algorithm. Populate the CMA-ALG-ENTRY.

CMA-MOD-ID = MOD-ID
CMA-MOD-INST = MOD-INST
CMA-RETR-UPD = ALG-USE-CODE

For each parameter retrieved:

5.8.3 Access the CDM tables PARM and UDDT to retrieve the
parameters DATA-TYPE, SIZE and ND. Populate the
CMA-PARM-ENTRY.

CMA-PARM-TYPE = DATA TYPE
CMA-PARM-SIZE = SIZE
CMA-PARM-ND = ND

5.8.4 If the parameter is an AUC-PARM (attribute):
CMA-TAG-NO = AUCNO retrieved

If the parameter is a CONST-PARM (constant):
CMA-CONST-VAL = CONSTANT-VALUE retrieved
CMA-RT-NO = RT-NO retrieved, also

populate the CMA-DF-ENTRY with information about all the
elementary datafields of this record, along with the
type, size and decimal specification of each datafield.
Access CDM tables DF and UDDT using the RT-NO parameter.

If the parameter is a DF-PARM (datafield):
CMA-DF-NO = DF-NO retrieved
CMA-RT-NO = RT-NO of DF-NO retrieved,

also retrieve the data type,
size and decimal

15-22

DS 620341200
30 September 1990

specification of the
datafield by accessing the
CDM tables DF and UDDT.

If the datafield is not elementary, issue a warning and
set:

CMA-DF-TYPE = DATATYPE of PARM
(CMA-PARM-TYPE)

CMA-DF-SIZE = SIZE of PARM (CMA-PARM-SIZE)
CMA-DF-ND = ND of PARM (CMA-PARM-ND)
Else
CMA-DF-TYPE = TYPE of DF
CMA-DF-SIZE = SIZE of DF
CMA-DF-ND = ND of DF

Note: An AUC can map to either a record or to
datafield(s) but not both, through a complex mapping
algorithm

5.8.5 Record the complex mapping algorithm that must be
used.

Build an IS-QUALIFY-ENTRY for the AUC-PARM entry from
Step 5.8.1 as follows:

ISQ-DBIDR = DBID in the AUC-PARM entry
ISQ-RTIDR = RTNO in the AUC-PARM entry
ISQ-DFNOR = blank
ISQ-MAP-ALG-IDR = MOD-ID in the AUC-PARM entry
ISQ-MAP-ALG-PTRR = index value of the

CMA-ALGORITHM-ENTRY
from Step 5.8.3

ISQ-PARM-NOR = PARM NO found in Step 5.8.1

5.9 Fill in the TEMP-RECORD-TABLE as follows:

If IS-ACTION = 'S', 'I', '2', OR 'K'

Scan the IS-QUALIFY-LIST, making a TRT-LIST entry for each
distinct ISQ-DBIDR, ISQ-RTNOR encountered:

TRT-DBNO = ISQ-DBIDR
TRT-RTNO = ISQ-RTNOR
TRT-ECNO = CSQ-ECNOR

If there is already a TRT-LIST entry for a TRT-DBID,
TRT-RTNO, do not duplicate the entry.
Return to Step 5.6 to process the next AUCISM entry.

6a. Provide union discriminator values for record types that
result from the union of entity classes.

If the CS-ACTION is 'S', 'i', '2', or 'K', consider entries
in both the IS-ACTION and IS-QUALIFY lists for the
remainder of this step. If the CS-ACTION is 'M' or 'D'
consider only the first entry in the IS-ACTION list for the
remainder of this step. If the CS-ACTION is 'I' continue
processing at Step 6.

15-23

DS 620341200
30 September 1990

For each IS-ACTION and IS-QUALIFY-LIST entry, find all the
ECTRUD (E205) entries with:

ECNO = CS-ECNO in the CS-QUALIFY-ENTRY
whose index = ISQ-CS-PTR or CS-ECNO
in the CS-ACTION-ENTRY whose index =
IS-CS-PTR and

either

DBID IS-DBID
RTNO = IS-RTNO
or
DBID = ISQ-DBIDL and
RTNO = ISQ-RTNOL
or
DBID = ISQ-DBIDR and
RTNO ISQ-RTNOR.

If no such ECRTUD entries are found, none of the record types
result from unions and the rest of Step6a can be ignored.

Prepare an IS-QUALIFY-LIST entry from each ECRTUD
entry found as follows:

ISQ-EC-NO = EC-NO from the ECRTUD entry
ISQ-DBIDL = DBID from the ECRTUD entry
ISQ-RTNOL = RTNO from the ECRTUD entry
ISQ-DFNOL = DFNO from the ECRTUD entry
ISQ-OP = COMPARISON OP from the ECRTUD
ISQ-VARIABLE = generated local variable

containing UNION-VALUE
from the ECRTUD entry

ISQ-DFL-KNOWN-FLAG = DBMS access flag of ECRTUD entry
ISQ-TYPEL = TYPE of ECRTUD entry
ISQ-SIZEL = SIZE of ECRTUD entry
ISQ-NDL = ND of ECRTUD entry
ISQ-CSQ-PTR = zero
ISQ-BOOLEAN = Module Pre5A will handle the

'AND' and 'OR' logic for the
union discriminators

ISQ-TYPE2-SOURCE = "U"

6. Determine additional joins that can be used to qualify
data.

6.1 For each TK-KCNO in TEMP-KEY-LIST:

6.1.1 Find the TEMP-KEY-LIST entries with the TK-KCNO. In the
rest of Step 6.1 consider this TK-KCNO only if all the
entries just found have TK-REF-FLAG = 'Y'.

6.1.2 For each of the TEMP-KEY-LIST entries found in Step
6.1.1, modify the KEY-JOIN-LIST entry where
KJ-TK-PTR = index of the TEMP-KEY-LIST entry:

Set KJ-RJ-OK = 'Y'

15-24

DS 620341200
30 September 1990

6.2 Eliminate any duplicate REPL-JOIN-LIST entries (entries
that have exactly the same values).

For each remaining entry in the REPL-JOIN-LIST:

6.2.1 Find the KEY-JOIN-LIST entries with KJ-RJ-PTR = index
of the REPL-JOIN-LIST entry. If all of these have
KJ-RJ-OK = 'N', then modify the REPL-JOIN-LIST entry:

Set RJ-OK = IN'

6.2.2 If RJ-DBNO and RJ-RTNO do not appear as the IS-DBNO or
IS-RTNO of any entry in the IS-ACTION-LIST or as the
ISQ-DBNOL or ISQ-RTNOL or the ISQ-DBNOR or ISQ-RTNOR of
any entry in the IS-QUALIFY-LIST, then modify the
REPL-JOIN-LIST entry:

Set RJ-OK = IN'

6.2.3 If RJ-PTR-TYPE = 1 and
RJ-DBNO, RJ-RTNO and
IS-DBNO, IS-RTNO in
IS-ACTION-LIST (RJ-PTR)
equals
ISQ-DBNOL, ISQ-RTNOL and
ISQ-DBNOR, ISQ-RTNOR
(or vice versa) in (1-n)
IS-QUALIFY-LIST
then
modify the REPL-JOIN-LIST entry:

Set RJ-OK I N'

6.2.4 If RJ-OK = Y', build a corresponding IS-QUALIFY-LIST
entry:

ISQ-NDML-NO = CSQ-NDML-NO for this
request

ISQ-DBNOL = RJ-DBNO
ISQ-RTNOL = RJ-RTNO
ISQ-DFNOL = RJ-DFNO
ISQ-TYPEL = RI-TYPE
ISQ-SIZEL = RJ-SIZE
ISQ-NDL = RI-ND
ISQ-OP = 1=
ISQ-BOOLEAN = 'AND'

Use RI-PTR-TYPE to determine the source for
each of the following:

= 1 = 2 =3

ISQ-DBNOR = IS-DBNO ISQ-DBNOL ISQ-DBNOR

ISQ-RTNOR = IS-RTNO ISQ-RTNOL ISQ-RTNOR

ISQ-DFNOR = IS-DFNO ISQ-DFNOL ISQ-DFNOR

15-25

DS 620341200
30 September 1990

using the entry in IS-ACTION-LIST (if RJ-PTR-TYPE =
1) or IS-QUALIFY-LIST (if RJ-PTR-TYPE = 2 or 3).
Complete the right side data type, size and decimal
specification.

7. Clean up the various tables and lists.

7.1 Determine if there are duplicate IS-ACTION-LIST

entries for a DELETE, MODIFY, or INSERT action. If this
occurs, the NDML request because this indicates multiple
update values for one data field which is not allowed.
This is a warning message, until such time the CDM-l as
built model is modified, to prevent the same attribute
being migrated from two separate independent entities to
the same dependent entity.

Note:Do not eliminate any duplicate IS-ACTION-LIST entries
for a SELECT action. The user is allowed
to specify duplicate data items.

7.2 Eliminate any duplicate IS-QUALIFY-LIST entries,
(any whose "left" and "right" s-les match
another's "left" and "right" sides), arbitrarily
picking one to retain.

7.3 Eliminate any IS-QUALIFY-LIST entries whose "left" and
"right" sides are another's "right" and "left" sides, and
both have ISQ-OP equal to '=', arbitrarily picking one to
retain.

8. Include type values in ISQ-TYPE and eliminate
extraneous joins.

8.1 Modify the IS-ACTION-LIST and IS-QUALIFY-LIST to
include type values for each phrase of the
transaction.

Each entry in the IS-ACTION-LIST is designated Type 1.

Each entry in the IS-QUALIFY-LIST for which ISQ-
VARIABLE is not blank is designated Type 2
(select-predicate).

Each Type 2 entry in the IS-QUALIFY is designated an
ISQ-TYPE2-SOURCE where:

21 - source is index
2U - source is a union discriminator
2E - source is a user external schema qualification

For every Type 2 entry with ISQ-TYPE2-SOURCE equal
blanks, assign ISQ-TYPE2-SOURCE = "E"

Each entryin the IS-QUALIFY-LIST for which ISQ-
VARIABLE is blank and ISQ-OP is '=' is designated
Type 3 (join predicate).

15-26

DS 620341200
30 September 1990

Each entry in the IS-QUALIFY-LIST for which ISQ-
VARIABLE is blank and ISQ-OP is 'U=' is
designated Type 7 (outer join operator).

8.2 Eliminate any IS-QUALIFY-LIST Type 3 entries for
which either side's DBNO or RTNO does not appear in another
IS-ACTION-LIST or IS-QUALIFY-LIST entry. Note that the
elimination of an entry may cause another entry to be
removed that was previously considered to be needed.

Search all Type 3 IS-QUALIFY entries until all eliminations
are completed. Proceed as follows:

8.2.1 Set ENTRY-CLEARED = 'N'

8.2.2 IF ENTRY-CLEARED = 'Y', search once again thru the
IS-QUALITY entries, starting wih the first Type 3 entry.

8.2.3 If ENTRY-CLEARED = 'N', consider the next IS-QUALIFY
entry.

Using the IS-QUALIFY, Type 3 entry selected:

8.2.4 If the ISQ left entry matches any IS-ACTION entry and
the ISQ right entry matches any IS-ACTION entry,
continue at Step 8.2.3.

8.2.5 If the ISQ left and right entry does not match any
IS-ACTION entry, this qualification is unnecessary and
should be deleted. Delete this IS-QUALIFY entry.
Set ENTRY-CLEARED = 'Y'. Continue at Step 8.2.2.

8.2.6 If the ISQ left entry matches any IS-ACTION entry and
the ISQ right entry matches any IS-QUALIFY LEFT or RIGHT
ENTRY, continue at Step 8.2.3.

8.2.7 If the ISQ left entry matches any IS-QUALIFY left or
right entry, and the ISQ right entry matches any
IS-ACTION entry continue at Step 8.2.3.

8.2.8 Delete this IS-QUALIFY entry
Set ENTRY-CLEARED = 'YI
Continue at Step 8.2.2

8.3 Eliminate a union discriminator Type 2 entry whose DBID
does not appear in the IS-ACTION-LIST.

9. Identify the additional IS record sets that can be used in
processing the request. These record sets map to
relation classes for which the request specifies joins
across owned and inherited key classes. Note that the
intra-subtransaction joins for which the join fields are
not owned/inherited key classes are handled by the
Aggregator CI.

We are attempting to find the following case:

15-27

DS 620341200
30 September 1990

--------------------- ---------------------T1I R1 - T

Ti--+ I i--

IElII 1E21
--------------- + +------------------

If the CSQ had the following qualification:

El.T1 = E2.T1, which we will find by following the ISQ
pointer back to the CSQ, find if the relation class
(R1) maps to a record set.

Proceed as follows:

For each Type 3 entry in the IS-QUALIFY-LIST with
ISQ-DBNOL = ISQ-DBNOR:

9.1 If either ISQ-RTNOL and ISQ-DFNOL or ISQ-RTNOR and
ISQ-DFNOR are not filled in, eliminate the entry from
further consideration in Step 9.

9.2 Follow ISQ-CSQ-PTR back to the CS-QUALIFY-LIST.

9.2.1 If it is not the case that:
there is an IAC (E7) with AUCNO = CSQ-AUCL and
KC-MEMBER-AUC-NO = CSQ-AUCR or there is an IAC (E7) with
AUCNO = CSQ-AUCR and KC-MEMBER-AUC-NO = CSQ-AUCL
then eliminate the entry from further consideration in
Step 9.

9.2.2 Find the IAC (E7) entries with the same RCNO as the IAC
(E7) found in Step 9.2.1. If any entry does not have a
corresponding CS-QUALIFY-LIST entry with:

CSQ-AUCL or CSQ-AUCR = AUCNO
CSQ-VARIABLE = blank
CSQ-OP = 1='

then eliminate the entry from further consideration in
Step 9.

9.2.3 Find the RCSM (E109) entries with RCNO the same as the
RCNO in the IAC (E7) found in Step 9.2.1.

Fill in the following fields in the IS-QUALIFY-LIST
entry:

ISQ-NUM-RSL = 1
ISQ-RSNOL(l) = RSNO of RCSM's key

9.2.4 Fill in a SET-TABLE entry for each of the RCSM (E109)
entries found in Step 9.2.3:

15-28

DS 620341200
30 September 1990

ST-DBNO = DBNO of RCSM's key
ST-RSNO = RSNO of RCSM's key
ST-NUM-MEMBERS = 1
ST-MEMBER (1) = MEMBER-RTNO of RCSM's

key

Note: If there already is a SET-TABLE entry with this
ST-DBNO and ST-RSNO, do not duplicate it.

Find the RS (E72) entry with the same DBNO and RSNO as
the RCSM. Continue to fill in the SET-TABLE entry:

ST-OWNER = OWNER-RT-NO in RS
ST-TOTAL-NUM-MEMBERS = TOTAL-NUM-MEMBERS in RS

10. Group the pieces of the request into subtransactions, each
of which represents a connected path through a database, by
doing the following:

Initialize the GROUP-TABLE.
Perform until all IS-SUBTRANS-IDs in the IS-ACTION-LIST and
all ISQ-SUBTRANS-IDLs in Type 2, 3, and 7 entries in the
IS-QUALIFY-LIST and all ISQ-SUBTRANS-IDRs in Type 3 entries
in the IS-QUALIFY-LIST are filled in:

10.1 Select an IS-DBID, IS-RTID from the IS-ACTION-LIST with
the IS-SUBTRANS-ID not filled in. If there are none, go
to Step 10.2, otherwise,

Set TEMP-DBID = DB-ID of IS-ACTION entry
TEMP-RTID = RT-ID of IS-ACTION entry
Go to Step 10.3 to begin grouping.

10.2 Select a ST-DBID, ST-RTID-OF-OWNER from the SET-TABLE
with ST-SUBTRANS-ID not filled in. If there are none,
go to Step 10.3 otherwise,

Set TEMP-DBID = DBID
TEMP-RTID = RTID-OF-OWNER

10.3 Start a new group by assigning it an identifier, which
will be used as a SUBTRANS-ID.

10.4 Access the CDM tables DBH, SCH, PWD using the DBID of
the current GROUP-TABLE entry to retrieve information
about the database, dbms and host. Add an entry to the
SUBTRANSACTION-PROCESS-ID-TABLE.

10.5 If the DBMS selected is NOT relational such as DB2 or
ORACLE, continue at Step 10.6. A relational database is
grouped into one simple subtransaction for a "Select"
action.

For an update action, each unique record is grouped into
a separate subtransaction.

15-29

DS 620341200
30 September 1990

10.5.1 Scan through the IS-ACTION-LIST. For each entry having
IS-DBID = TEMP-DBID (IS-RTID = TEMP-RTID, if not
update), assign the group-identifier to the
IS-SUBTRANS-ID.

10.5.2 Scan through the IS-QUALIFY-LIST. For each entry having
ISQ-DBIDL = TEMP-DBID (ISQ-RTIDL = TEMP-RTID, if not
udate), assign the group-identifier to the
ISQ-SUBTRANS-IDL. Also, for each entry having ISQ-DBIDR
= TEMP-DBID (ISQ-RTIDR = TEMP-RTID, if not update),
assign the group-identifier to the ISQ-SUBTRANS-IDR.

10.5.3 Return to Step 10.1 to select thu next IS-ACTION entry.

10.6 Fill entries in the GROUP-TABLE with all related record
types so they can be grouped into the same
subtransaction.

10.6.1 Make a new entry in the group table
SET PIVOT-DBID = TEMP-DBID
SET PIVOT-RTID = TEMP-RTID
ADD 1 to GROUP-USED
SET GR-RTID = TEMP-RTID
SET GR-FLAG = 'N'

10.6.2 Scan through the SET-TABLE for an entry with
ST-SUBTRANS-ID not filled in.

10.6.3 IF ST-DBID = PIVOT-DBID and
ST-RTID-OF-OWNER = PIVOT-RTID
Assign the group-identifier to ST-SUBTRANS-ID
SET TEMP-RTID = ST-RTID-OF-MEMBER
ADD TEMP-RTID to the GROUP-TABLE. Do not duplicate.
Set GR-FLAG = 'N'

10.6.4 IF ST-DBID = PIVOT-DBID and
ST-RTID-OF-MEMBER = PIVOT-RTID
SET TEMP-RTID = ST-RT-ID-OF-OWNER
ADD TEMP-RTID to the GROUP-TABLE.
Do not duplicate. Set GR-FLAG = 'N'
SET TEMP-RTID = ST-RTID-OF-MEMBER
ADD TEMP-RTID to the GROUP-TABLE
SET GR-FLAG = 'N'

10.6.5 Perform grouping for each entry in the GROUP-TABLE until
grouping completed (all GR-FLAG = IYI).
Set GR-INDEX to 1 and proceed as follows:

10.6.6 Scan the IS-ACTION list for each entry having IS-DBID =
PIVOT-DBID and IS-RTID = PIVOT-RTID or if IS-RTID is not
filled in the IS-STID = ST-SETID of the SET-TABLE having
the owner or member record type as PIVOT-RTID.

If a match is found, assign the group-identifier to
IS-SUBTRANS-ID.

10.6.7 Scan the left side of the IS-QUALIFY list for a match on
PIVOT-DBID and PIVOT-RTID. If a match is found, a;sign
the group-identifier to ISQ-SUBTRANS-IDL.

15-30

DS 620341200
30 September 1990

10.6.8 Scan the right side of the IS-QUALIFY-LIST for a match
on PIVOT-DBID and PIVOT-RTID. If a match is found,
assign the group-identifier to ISQ-SUBTRANS-IDR.

10.6.9 Set GR-FLAG = 'Y' for this GROUP-TABLE entry.

10.6.10 Check if the GROUP-TABLE is empty or all GR-FLAG = 'Y'.

10.6.11 If there are more entries to be processed:
Add 1 to GR-INDEX
Set PIVOT-RTID = GR-RTID
Perform Step 10.6.2, looking further for owner and
member record matches in the SET-TABLE. Return to
Step 10.6.6.

Otherwise, continue at Step 10.1.

10.7 For each Type 7 entry in the IS-QUALIFY-LIST:

If CSQ-RCNOR = zero in the CS-QUALIFY-ENTRY whose index
= ISQ-CSQ-PTR, assign a new identifier to
ISQ-SUBTRANS-IDR.

If that CSQ-RCNOR not = zero and not = CSQ-RCNOR for any
prior IS-QUALIFY-ENTRY, assign a new identifier to
ISQ-SUBTRANS-IDR.

If that CSQ-RCNOR noL = zero but does = CSQ-RCNOR for a
prior IS-QUALIFY-ENTRY, assign the identifier from that
prior IS-QUALIFY-ENTRY to ISQ-SUBTRANS-IDR in this
IS-QUALIFY-ENTRY.

Note that the "right" side of each Type 7 entry
becomes a Subtransaction by itself unless it is a member
of the same inherited key class as another. All members
of the same inherited key class are placed in the same
Subtransaction.

10.8 An Update action may result in multiple subtransactions
regardless of whether the entity being updated "allows"
or "disallows" update.

No special verification is peformed for an Insert NDML
statement. All insert actions are considered updatable.

Validation needs to be performed for Delete and Modify
Actions to verify that the records being updated contain
the necessary qualification logic for each
subtransaction. Proceed as follows: for TYPE-2
Qualifications.

10.8.1 Initialize local variables and internal tables.

10.8.2 Populate the table IS-ACTION-UPDATE-LIST (IAUL) by
scanning the IS-Action for each unique database/record
being updated.

15-31

DS 620341200
30 September 1990

10.8.3 Consider all IS-QUALIFY Type 2 enties resulting for each
CS-QUALIFY entry.

10.8.4 There must exist a match where IAUL-SUBTRANS =
ISQ-SUBRANS-IDL for each IAUL-entry populated.

10.8.5 If a match is not found, issue an error message that no
qualification was found to update a particular record.

10.9 Proceed as follows for Type 3 Qualifications. Type 3
Qualifications will exist if a Delete or Modify Action
has a "Using" clause.

10.9.1 Determine if a Using clause has been specified. If a
"Using" entity is not found, exit Step 10.9.

10.9.2 Scan the IS-Action List for entity(s) specified on the
using clause and the join qualifications across the
using entity and entity bein updated. If this is a
relational DBMS, populate the table USING-ENTITY-LIST
(UEL) with information about the "using" entities.

10.9.3 If this is a non-relational subtrans, there must exist a
set between the USING-ENTITY and the UPDATE-ENTITY, and
will consequently result in a 1 subtransaction.
Validate that the statement is true.

10.9.4 If this is a relational DBMS, extra processing is
necessary. Each unicue record has been grouped into its
own subtransaction, i.e. the USING-ENTITY and
UPDATE-ENTITY are in 2 distinct subtransactions.
Validate that a join does exist between these two
subtransactions and collapse them into the single
subtransaction. Take care to duplicate IS-Action
entries if necessary.

10.9.5 If the relevant join is not found in Step 10.9.3 or
10.9.4, issue an error stating that a legal join does
not exist between the USING and UPDATE entities.

11. Distinguish between the inter- (Type 4) and intra-(Type 3)
Subtransaction joins.

For each Type 3 entry in the IS-QUALIFY-LIST, if ISQ-
SUBTRANS-IDL is not = ISQ-SUBTRANS-IDR, then change the
entry's ISQ-TYPE to be Type 4.

12. IF IS-ACTION = 'S' or 'Q' or 'I' or '2' or 'K', put all
result fields into the IS-ACTION-LIST and RFT:

12.1 If it is not already there, add to the IS-ACTION-LIST
each of the Type 4 and Type 7 halves.

Fill in the corresponding fields from the left or right
half of the IS-QUALIFY-LIST entry. Also, set

15-32

DS 620341200
30 September 1990

IS-SOURCE = blank
IS-ISQ-L-R = "L" or "R" depending on whether

this entry is built from the
IS-QUALIFY Left or Right

IS-ISQ-PTR = ISQ-INDEX

12.2 For each entry in the IS-ACTION-LIST with non-blank
IS-CS-PTR, add an entry to the RFT.

Follow the IS-CS-PTR to find the corresponding entry in
the CS-ACTION-LIST.

RFT-SUBTRANS = IS-SUBTRANS-ID
RFT-ATTR = AUC
RFT-SIZE = CS-SIZE
RFT-IS-PTR = index of the IS-ACTION-LIST entry
RFT-TYPE = CS-DATATYPE
RFT-ND = CS-ND

12a. Check for multiple sets of nested repeating data fields
in the same subtransaction.

Check if the following subcomponent datafield is
referenced:

03 D1 OCCURS 10.
04 E2 PIC X.
04 E3.

05 E4 PIC X
05 E5 PIC X

03 Fl.
04 F2 PIC X
04 F3 OCCURS 10,

05 F4 PIC X
05 F5 PIC X

Note: Selection of E2 and E4 and E5 is allowable.
Selection of E2, E4 and F4 is not allowable.
All fields selected per subtransaction must have
the same parentage chain.

e.g. E2's parentage is D1
E4's parentage is D1 E3
E5's parentage is D1 E3
F4's parentage is F1 F3

For each IS-ACTION-ENTRY with IS-DF-REPEAT-FLAG not =
'N':

12a.1 Find the TOT-OCCURS-NEST entry with TOT-IS-PTR =
index for the current IS-ACTION-ENTRY.

Set OT-INDEX-2 to zero.

Find an OT-SUBTRANS entry with OT-SUBTRANS-ID =
IS-SUBTRANS-ID. If one is not found, go to Step
12a.3.

15-33

DS 620341200
30 September 1990

12a.2 Compare a TOT-OCCURS-STACK entry to an OT-OCCURS-
LEVEL entry.

If this TOT-OCCURS-STACK is empty, go to Step 12a.1
to check the next IS-ACTION-ENTRY for a repeating
data field.

Pop the TOT-OCCURS-STACK into TEMP-OCCURS-ENTRY.

Increment OT-INDEX-2. If OT-INDEX-2 is greater than
OT-LEVELS-USED, go to Step 12a.4.

If TEMP-OCCURS-ENTRY = OT-OCCURS-LEVEL (OT-INDEX-1,
OT-INDEX-2), go to Step 12a.2.

If this point is reached, two different sets of
nested repeating data fields are being called for.
Reject the NDML statement (cannot retrieve from more
than one set of nested repeating data fields).

12a.3 Begin a new OT-SUBTRANS entry.

Set OT-SUBTRANS-ID = IS-SUBTRANS-ID.

Set OT-LEVELS-USED = zero.

Go to Step 12a.2.

12a.4 Build a new OT-OCCURS-LEVEL entry.

Set OT-OCCURS-LEVEL (OT-INDEX-1, OT-INDEX-2) to
TEMP-OCCURS-ENTRY.

Increment OT-LEVELS-USED.

Go to Step 12a.2.

13. Build the JQG if CS-ACTION = 'S' or 'Q' or '1' or '2' or
OKI.

13.a For each Type 4 or Type 7 entry in the IS-QUALIFY-LIST,
fill in a JQG entry:

13.1 If the set of CS-PTR values in the IS-ACTION-LIST
entries corresponding to the left side of a Type 4 entry
is exactly the same as the set of CS-PTR
values in the IS-ACTION-LIST entries corresponding to the
right side of the Type 4 entry

JQG-EDGE-TYPE = 5
else JQG-EDGE-TYPE = 4.

The CS-PTR values would be identical if we are attempting
to qualify on two horizontally partitioned fragments of an
entity. If the operator was left as an equal operator
(=), no rows of data would be retrieved for the NDML
request. This situation consequently should become a
union.

15-34

DS 620341200

30 September 1990

13.2 For a Type 7 entry, JQG-EDGE-TYPE = 7.

13.3 JQG-SUBTRANS-IDL = ISQ-SUBTRANS-IDL
JQG-SUBTRANS-IDR = ISQ-SUBTRANS-IDR

13.4 Make an entry in the JQG-ATTRIBUTE-PAIR-LIST for
each of the matching fields if the data types of the
attributes of the corresponding CS-QUALIFY-LIST entry are
compatible (i.e. a character type (C) must only be compared
to a character type and a numeric type (N,S) must be
compared to a numeric type).

If the data types are compatible, make an entry in the
JQG-ATTRIBUTE-PAIR-LIST as follows:

JQG-ATTRL = CSQ-AUCL
JQG-ATTRR = CSQ-AUCR

13.b Create JQG union entries for horizontally-partitioned CS
entity classes.

Scan the IS-ACTION-LIST for entries containing identical
IS-CS-PTR values. For each set of entries found, fill in a
JQG entry, such that each element of the set is "connected"
to one other:

JQG-EDGE-TYPE = 5
JQG-SUBTRANS-IDL = IS-SUBTRANS-ID from one of the

pair
JQG-SUBTRANS-IDR = IS-SUBTRANS-ID from the other of

the pair

14. Clean up the JQG.

If there are JQG entries with the same edge type and
identical pairs of JQG-SUBTRANS-IDL and JQG-SUBTRANS-IDR
values, combine their JQG-ATTRIBUTE-PAIR-LIST entries and
collapse the JQG entries into a single JQG entry.

15. If CS-ACTION not 'S' or 'Q' or 'I' or '2' or 'K' or 'I' or
'M' or 'D', then fill in the first entry of the
IS-ACTION-LIST as follows:

IS-ACTION = CS-ACTION
IS-NDML-NO = CS-NDML-NO

Leave all other fields in the entry blank and leave all
other entries blank. Proceed to Step 20.

Steps 16 through 19 must be performed at the completion of
function PRE5 to insure that each subtransaction identified
is valid and that the join query graph will have enough
information to combine the results of all subtransactions.

16. Check that each subtransaction appears in at least one
entry in the IS-ACTION-LIST.

15-35

DS 620341200
30 September 1990

16.1 For each subtransaction identified for the request
(SUB-USED), search the IS-ACTION-LIST for an entry having
the same subtransaction identification.

IS-SUBTRANS-ID = current SUB-INDEX

16.2 If no matching entries are found, issue an error message
and reject the NDML request.

17. Check that the join query graph built for this NDML request
is complete and will be able to combine the results of all
subtransactions.

17.1 For each subtransaction identified for the request,
search the JQG for an entry having the same subtransaction
identification.

JGQ-SUBTRANS-IDL = current SUB-INDEX
or
JQG-SUBTRANS-IDR = current SUB-INDEX

17.2 If no matching entries are found, issue an error message
and reject the NDML request.

18. Check that an NDML update request did not result in
distributed transactions.

If IS-ACTION = 'I', 'M', or 'D', and SUB-USED is greater
than 1, issue a warning message for this NDML request.

19. Determine if an NDML MODIFY or DELETE action for a SQL DBMS
has both a "USING" clause and any complex mapping
algorithms in the WHERE clause.

19.1 Determine if the DBMS for a MODIFY or DELETE action is SQL
based.

If the DBMS for the subtransaction is not "ORACLE" or

"DB2", continue processing at Step 20.

19.2 Determine if the NDML transaction has a "USING" clause.

If a "USING" clause was not specified, continue processing
at Step 20.

19.3 Determine if any qualification entries participate in
complex mapping algorithms.

If each used left and right half entry in the
IS-QUALIFY-LIST does not participate in a complex mapping
algorithm, continue processing at Step 20.

ISQ-MAP-ALG-PTRL = 0 and
ISQ-MAP-ALG-PTRR = 0
This must be true for each half.

If one entry is found to participate in a complex mapping
algorithm, issue an error message and reject the NDML
request. This is true if any

15-36

DS 620341200
30 September 1990

ISQ-MAP-ALG-PTRL NOT = 0 or
ISQ-MAP-ALG-PTRR NOT = 0

20. Complete precompilation of this conceptual
transaction.

20.1 Invoke function PRE5A to determine what
qualifications are evaluatable at the internal schema
level.

20.2 Invoke function PRE5B to remove retrieval entries from
identified CDMP tables that are evaluatable at the internal
schema level.

20.3 Invoke function PRE13 to control the generation of the code
to satisfy the NDML request. When PRE13 is finished return
to PRE4.

21. Upon successful precompilation of the conceptual
transaction by PRE13, store all cross references from the
generated software module to the internal schema objects.

21.1 For every entry in the IS-ACTION-LIST, store a DFU (E300)
entry. The IS-ACTION-LIST contains the data field object
number (IS-DFNO). The MOD-ID of (E300) is the generated
module name. This may be found by using the CGT-MOD-NAME
of the CGT where the IS-SUBTRANS-ID = CGT-SUBTRANS-ID and
the CGT-CASE-NO = the NDML-COUNTER.

The DF-USAGE-CODE will be the value I, M, D, or S from the
IS-ACTION.

21.2 For every data field entry (left or right) in the
IS-QUALIFY-LIST, store a DFU (E300) entry. The
IS-QUALIFY-LIST contains the data field object number
(ISQ-DFNOL and ISQ-DFNOR). The MOD-ID of (E300) is the
generated module name. This may be found by using the CGT
table as in step 18.1, but with the ISQ-SUBTRANS-IDL or
ISQ-SUBTRANS-IDR.

21.3 For every entry in the SET-TABLE, store an RSU (E299)
entry. The SET-TABLE contains the record set object number
(ST-RSNO). The MOD-ID of (E300) is the generated module
name. This may be found by using the CGT table as in Step
17.1 and the ST-SUBTRANS-ID.

15.3 Constraints

This algorithm does not accommodate row-wise derivation of
attributes in the CS-IS mapping. This type of derivation is not
implemented in this release.

Replication is handled by designating in the CDM a primary
source for each replicated data field.

15-37

DS 620341200

30 September 1990

For Retrieval

If Entity Retrieval Rule = "ALLOW", a secondary copy is
considered if the requesting process is on the same host. If a
copy is not available on the local host, the primary copy is
retrieved.

If the Entity Retrieval Rule = "DISALLOW", only the primary
copy is considered.

For Update

If the Entity Update Rule = "DISALLOW", only the primary
copy is updated.

If the Entity Update Rule = "ALLOW", update transactions
are generated for the primary and secondary copies or sources of
data.

Note, that if a CS attribute use class maps to more than
one IS record set, then all of those record sets must have the
same owner record type and same member record types.

15.4 Outputs

1. IS NDML Subtransactions represented by the IS-ACTION-LIST
and IS-QUALIFY-LIST. Each of these subtransactions is in
NDML format and accesses one database. These will be input
to function PRE6 - Select IS Access Path, and are in IS
terms.

01 IS-ACTION-LIST.

input to pre6
03 IS-MAX PIC 99 VALUE 60.
03 IS-USED PIC 99 VALUE 0.
03 IS-ST-MAX PIC 99 VALUE 25.
03 IS-LOCK PIC X.

88 IS-SHARED-LOCK VALUE "S".
88 IS-EXCLUSIVE-LOCK VALUE "X".
88 IS-NO-LOCK VALUE "N".

03 IS-ACTION PIC X.
88 IS-MODIFY-ACTION VALUE "M".
88 IS-DELETE-ACTION VALUE "D".
88 IS-INSERT-ACTION VALUE "I".
88 IS-SELECT-ACTION VALUE "S".
88 IS-SELECT-COMB VALUE "Q".
88 IS-REF-INTEG-l VALUE "1".
88 IS-REF-INTEG-2 VALUE "2".
88 IS-UNIQUE-KEY VALUE "K".
88 IS-BEGIN-ACTION VALUE "B".
88 IS-COMMIT-ACTION VALUE "C".
88 IS-ROLLBACK-ACTION VALUE "R".
88 IS-NEXT-CONT VALUE "N".
88 IS-END-CURLY VALUE "E".
88 IS-EXIT-BREAK VALUE "X".

03 IS-NDML-NO PIC 9(6).
Segregator of CS NDML statements and controller

of case structues in generated request processors
03 IS-RETR-ENTRY OCCURS 60 TIMES

INDEXED BY

15-38

DS 620341200
30 September 1990

IS-INDEX
One entry per column on select and modify, giving
primary data field.
One entry per data field in mapped-to record type
for insert and delete, some without corresponding
AUCs in CS/ES.

05 IS-SUBTRANS-ID PIC 999.
05 IS-META.

07 IS-DBID PIC 9(6).
07 IS-RTID PIC X(30).
07 IS-RTNO PIC 9(6).
07 IS-DFID PIC X(30).
07 IS-DFNO PIC 9(6).
07 IS-DATA-TYPE PIC X.
07 IS-SIZE PIC 999.
07 IS-ND PIC 99.

05 IS-LOCAL-VARIABLE PIC X(64).
source field for insert, modify target field
for select

05 IS-UNION-DISC-VAR REDEFINES
IS-LOCAL-VARIABLE.

07 IS-UNION-VALUE PIC X(30).
07 FILLER PIC X(34).

05 IS-MAPPED-TO-FLAG PIC X.
88 IS-MAPPED-TO VALUE "Y".
88 IS-NOT-MAPPED-TO VALUE "N".
distinguishes between datafields in record
type that have AUC counterpats and those that
do not

05 IS-CS-PTR PIC 999.
05 IS-ISQ-PTR PIC 999.
05 IS-ISQ-LR PIC X.
05 IS-FLAG PIC 9.

88 HAS-ACCESS-SPEC VALUE 1.
filled in by pre6

05 IS-FLAG-CONV PIC X.
88 ISCS-ALG VALUE "A" "K".
88 PRE6-USED VALUE "*".
88 UN-USED-ENTRY VALUE " ".
88 ALGORITHM-CONVERSION VALUE "A".
88 CONSTRAINT-CHECK VALUE "C".

05 IS-TYPE PIC X.
88 TARGET-VALUE VALUE "I".

05 IS-RFT-PTR PIC 999.
05 IS-FCTN-NAME PIC X(5).
05 IS-FCTN-DISTINCT PIC X.

88 APPLY-DISTINCT VALUE "Y".
05 IS-KEYFLAG PIC X.

Filled in by pre6 to denote keys for direct
access
05 IS-ALG-ID PIC X(8).
05 IS-PARM-NO PIC 999.
05 IS-ALG-PTR PIC 999.
05 IS-DF-KNOWN-FLAG PIC X.

88 IS-DF-KNOWN VALUE "K".
88 IS-DF-UNKNOWN VALUE "U".

05 IS-DF-REPEAT-FLAG PIC X.
88 IS-DF-DOESNT REPEAT VALUE "N".

15-39

DS 620341200
30 September 1990

88 IS-DF-REPEATS VALUE "Y".
88 IS-DF-RG-COMP VALUE "C".
88 IS-DF-USE-INDEX VALUE "I".

05 IS-SOURCE PIC X.
88 IS-GENERATED VALUE "G".
88 IS-USER VALUE SPACE.

05 IS-DELETE-FLAG PIC 9.
88 IS-DELETED VALUE 1.

05 IS-ST-USED PIC 99.
03 IS-RETR-ENTRY1 OCCURS 25 TIMES

INDEXED BY
IS-INDEX1.

05 IS-RSNO PIC 9(6).
05 IS-STID PIC X(30).
05 IS-ST-VALUE PIC X(30).
05 IS-INDEX-PTR PIC 9(3).

01 IS-QUALIFY-LIST.
input to pre6
03 ISQ-MAX PIC 99 VALUE 40.
03 ISQ-USED PIC 99 VALUE 0.
03 ISQ-ST-MAX PIC 99 VALUE 25.
03 ISQ-NDML-NO PIC 99.
03 ISQ-ENTRY OCCURS 40 TIMES

INDEXED BY
ISQ-INDEX.

One entry per WHERE clause entry + one entry per
CS-ES join structure on select

One entry per WHERE clause entry on modify, delete
Not used on insert, begin, commit, or rollback

05 ISQ-CSQ-PTR PIC 999.
05 ISQ-RJ-PTR PIC 999.
05 ISQ-KEYFLAG PIC X.

88 IS-PRIMARY-KEY VALUE "P".
88 IS-SECONDARY-KEY VALUE "S".
88 IS-NOT-KEY VALUE SPACE.

filled in by pre6 to find access ports
05 ISQ-VARIABLE PIC X(64).
05 ISQ-UNION-DISC-VAR REDEFINES ISQ-VARIABLE.

07 ISQ-UNION-VALUE PIC X(30).
07 FILLER PIC X(34).

05 ISQ-OP PIC XX.
05 ISQ-BOOLEAN PIC X(7).
05 ISQ-TYPE PIC 9.

88 SELECT-PREDICATE VALUE 2.
88 INTRASUBTRANS-JOIN-PREDICATE VALUE 3.
88 INTERSUBTRANS-JOIN-PREDICATE VALUE 4.
88 INTERSUBTRANS-UNION VALUE 5.
88 OUTER-JOIN-PREDICATE VALUE 7.

05 ISQ-TYPE2-SOURCE PIC X.
88 SOURCE-IS-EXTERNAL VALUE "E".
88 SOURCE-IS-UNION VALUE "U".
88 SOURCE-IS-INDEX VALUE "I".

05 ISQ-EVAL-FLAG PIC 9.
05 ISQ-BOOLEAN-PTR PIC 999.
05 ISQ-LEFT-META.

07 ISQ-DBIDL PIC 9(6).
07 ISQ-RTIDL PIC X(30).
07 ISQ-RTNOL PIC 9(6).

15-40

DS 620341200
30 September 1990

07 ISQ-DFIDL PIC X(30).
07 ISQ-DFNOL PIC 9(6).
07 ISQ-TYPEL PIC X.
07 ISQ-SIZEL PIC 999.
07 ISQ-NDL PIC 99.

05 ISQ-SUBTRANS-IDL PIC 999.
05 ISQ-LEFT PIC 999.

88 HAS-ACCESS-SPEC-L VALUE 1.
filled in by pre6

05 ISQ-ALG-IDL PIC X(8).
05 ISQ-PARM-NOL PIC 999.
05 ISQ-ALG-PTRL PIC 999.
05 ISQ-DFL-KNOWN-FLAG PIC X.

88 IS-DFL-KNOWN VALUE "K".
88 IS-DFL-UNKNOWN VALUE "U".

05 ISQ-EC-NO PIC 9(6).
05 ISQ-RIGHT-META.

07 ISQ-DBIDR PIC 9(6).
07 ISQ-RTIDR PIC X(30).
07 ISQ-RTNOR PIC 9(6).
07 ISQ-DFIDR PIC X(30).
07 ISQ-DFNOR PIC 9(6).
07 ISQ-TYPER PIC X.
07 ISQ-SIZER PIC 999.
07 ISQ-NDR PIC 99.

05 ISQ-SUBTRANS-IDR PIC 999.
05 ISQ-RIGHT PIC 999.

88 HAS-ACCESS-SPEC-R VALUE 1.
filled in by pre6

05 ISQ-ALG-IDR PIC X(8).
05 ISQ-PARM-NOR PIC 999.
05 ISQ-ALG-PTRR PIC 999.
05 ISQ-DFR-KNOWN-FLAG PIC X.

88 IS-DFR-KNOWN VALUE "K".
88 IS-DFR-UNKNOWN VALUE "U".

05 ISQ-STL-USED PIC 99.
05 ISQ-STR-USED PIC 99.

03 ISQ-ENTRYl OCCURS 25 TIMES INDEXED BY ISQ-INDEX1.
07 ISQ-STIDL PIC X(30).
07 ISQ-RSNOL PIC 9(6).
07 ISQ-STL-VALUE PIC X(30).
07 ISQ-INDEX-L PIC 9(3).

03 ISQ-ENTRY2 OCCURS 25 TIMES INDEXED BY ISQ-INDEX2.
07 ISQ-STIDR PIC X(30).
07 ISQ-RSNOR PIC 9(6).
07 ISQ-STR-VALUE PIC X(30).
07 ISQ-INDEX-R PIC 9(3).

2. Join Query Graph. Each node represents an intermediate
relation that will result from a single Subtransaction.
Each edge represents the action to be taken to match rows of
the intermediate relations. The actions will be
performed by the Aggregator CI. Their sequence will be
scheduled by the Distributed Request Supervisor CI.
The JQG and JQG-ATTRIBUTE-PAIR-LIST are input to the
Distributed Request Supervisor at run-time and to function
PRE10 - Build Calls and Messages at precompile-time.

15-41

DS 620341200
30 September 1990

01 JQG.
input to DRS and PRE10
03 JQG-MAX PIC 99 VALUE 30.
03 JQG-USED PIC 99 VALUE 0.
03 JQG-EDGE OCCURS 30 TIMES INDEXED BY JQG-INDEX.

05 JQG-EDGE-TYPE PIC X.
88 JQG-UNION VALUE "5".
88 JQG-JOIN VALUE "4".
88 JQG-NOT VALUE "6".
88 JQG-OUTER-JOIN VALUE "7".
88 JQG-DELETED VALUE "*".

05 JQG-JOIN-PTR-TOP PIC 999.
05 JQG-SUBTRANS-IDL PIC 999.
05 JQG-SUBTRANS-IDR PIC 999.

01 JQG-ATTRIBUTE-PAIR-LIST.
accompanies JQG

03 APL-MAX PIC 99 VALUE 60.
03 APL-USED PIC 99 VALUE 0.
03 APL-ROW-SIZE PIC 99 VALUE 22.
03 APL-ROW OCCURS 60 TIMES INDEXED BY APL-INDEX.

05 JQG-SUBTRANSL PIC 999.
05 JQG-ATTRL PIC 9(6).
05 JQG-SUBTRANSR PIC 999.
05 JQG-ATTRR PIC 9(6).
05 JQG-NEXT-PTR PIC 99.
05 JQG-OP PIC XX.

3. Result Field Table. Each entry describes an attribute in an
intermediate relation, with the identifier of the
process that creates it.

The RFT is input to the Distributed Request Supervisor CI at
run-time and to function PRE10 - Build Calls and Messages at
precompile-time.

01 RFT.
Contains all result fields (anything to be
transferred by the NTM) and their creating
application process. Input to PRE10 and DRS.

03 RFT-MAX PIC 999 VALUE 200.
03 RFT-USED PIC 999 VALUE 0.
03 RFT-ROW-SIZE PIC 999 VALUE 24.
03 RFT-ENTRY OCCURS 200 TIMES INDEXED BY RFT-INDEX.

05 RFT-PID PIC 9(6).
05 RFT-SUBTRANS PIC 999.
05 RFT-ATTR PIC 9(6).
05 RFT-SIZE PIC 999.
05 RFT-IS-PTR PIC 999.
05 RFT-TYPE PIC X.
05 RFT-ND PIC 99.

4. Set Table. Each entry describes a record set that must be
traversed in processing a subtransaction. The SET-TABLE is
input to function PRE6 - Select IS Access Path.

15-42

DS 620341200
30 September 1990

01 SET-TABLE.
input to pre6
03 SET-MAX PIC 99 VALUE 25.
03 SET-USED PIC 99 VALUE 0.
03 ST-ENTRY OCCURS 25 TIMES INDEXED BY ST-INDEX.

05 ST-DBID PIC 9(6).
05 ST-RSNO PIC 9(6).
05 ST-OWNER-ID PIC 9(6).
05 ST-SETID PIC X(30).
05 ST-OWNER PIC X(30).
05 ST-FLAG PIC X.
05 ST-SUBTRANS-ID PIC 9(3).
05 ST-MARK PIC X.

88 HAS-ACCESS-SPEC-S VALUE "Y".
filled in by pre6

05 ST-MEMBER PIC X(30).
05 ST-MEMBER-ID PIC 9(6).
05 ST-MAPPING PIC 9(6).

88 AUC-SET-VALUE VALUE 1.
88 RC-BASED-REC-SET VALUE 2.

5. Subtransaction processes ID table.

This table identifies the subtransactions used for this
NDML statement.

01 SUBTRANS-PROCESS-ID-TABLE.
03 SUB-MAX PIC 99 VALUE 50.
03 SUB-USED PIC 99 VALUE 0.
03 SUBTRANS OCCURS 50 TIMES

INDEXED BY
SUB-INDEX.

05 STR-PROCESS-ID PIC X(10).
05 STR-DBMS-NAME PIC X(30).
05 STR-HOST-ID PIC XXX.
05 STR-DB-NAME PIC X(30).
05 STR-LIBRARY-NAME PIC X(30).
05 STR-DBID PIC 9(6).
05 STR-PASSWORD PIC X(30).
05 STR-DB-LOCATION PIC X(30).
05 STR-SCHEMA PIC X(30).
05 STR-SUBSCHEMA PIC X(30).
05 STR-CHAR-NULL-VALUE PIC X(30).
05 STR-INTG-NULL-VALUE PIC X(30).
05 STR-LOCALITY PIC X.
05 STR-NTM-DIRECT PIC XX.

6. IS OCCURS-TABLE. This table identifies the set of nested
repeating data fields, if any, that are involved in each
subtransaction.

01 OCCURS-TABLE.
03 OT-SUBTRANS-USED PIC 99.
03 OT-SUBTRANS-MAX PIC 99 VALUE 25.
03 OT-STACK-MAX PIC 9 VALUE 4.
03 OT-OCCURS-NEST OCCURS 25 TIMES INDEXED BY

OT-INDEX-1.
05 OT-SUBTRANS PIC 999.

05 OT-RTNO PIC 9(6).

15-43

DS 620341200
30 September 1990

05 OT-NEST-ID PIC 99.
05 OT-MAPPED-TO PIC X.
05 OT-INDEX-LEVELS PIC 9.
05 OT-STACK-USED PIC 9.
05 OT-DFNO-STACK OCCURS 4 TIMES INDEXED BY

OT-INDEX-2.
07 OT-DFNO PIC 9(6).
07 OT-COMP-DFNO PIC 9(6).
07 OT-OCCURS-DEP-DFNO PIC 9(6).
07 OT-INDEX-DFNO PIC 9(6).
07 OT-NUM-OCCURS PIC 9(4).
07 OT-LEVEL-NO PIC 9.

7. Complex Mapping Algorithm Table. This table identifies
the software modules and parameters that are needed to
perform complex mappings between CS and IS formats.

01 COMPLEX-MAPPING-ALG-TABLE.
03 CMA-MAX PIC 99 VALUE 10.
03 CMA-USED PIC 99 VALUE 0.
03 CMA-ALG-ENTRY OCCURS 10 TIMES

INDEXED BY CMA-INDEX.
05 CMA-MOD-ID PIC X(8).
05 CMA-MOD-INST PIC 999.
05 CMA-RETR-UPD PIC X.
05 CMA-PARM-COUNT PIC 99.
05 CMA-FLAG PIC X.

88 PARM-GENERATED VALUE "Y".
88 NO-PARM-GENERATED VALUE "N".

05 CMA-SUBTRANSACTION PIC 999.
05 CMA-PARM-ENTRY OCCURS 10 TIMES INDEXED BY

CMA-PARM-INDEX.
07 CMA-PARM-NO PIC 99.
07 CMA-TAG-NO PIC 9(6).
07 CMA-RTID PIC X(30).
07 CMA-RT-NO PIC 9(6).
07 CMA-DFID PIC X(30)
07 CMA-DF-NO PIC 9(6).
07 CMA-CONST-VAL PIC X(30).
07 CMA-PARM-TYPE PIC X.
07 CMA-PARM-SIZE PIC 999.
07 CMA-PARM-ND PIC 99.
07 CMA-DF-TYPE PIC X.
07 CMA-DF-SIZE PIC 999.
07 CMA-DF-ND PIC 99.
07 CMA-DBID PIC 9(6).

03 CMA-DF-COUNT PIC 999 VALUE 100.
03 CMA-DF-ENTRY OCCURS 100 TIMES

INDEXED BY
CMA-DF-INDEX.

05 DF-DFNO PIC 9(6).
05 DF-DFID PIC X(30).
05 DF-TYPE PIC X.
05 DF-SIZE PIC 999.
05 DF-ND PIC 99.
05 DF-MOD-PTR PIC 99.
05 DF-PARM-PTR PIC 99.

15-44

DS 620341200

30 September 1990

8. SUBTRANS-BOOLEAN-LIST

Contains all the BOOLEAN operators, parentheses, and
conditions which can be satisfied at the Internal Schema
level, for each subtransaction.

01 SUBTRANS-BOOLEAN-LIST.
03 SBL-MAX PIC 999 VALUE 300.
03 SBL-USED PIC 999.
03 SBL-ENTRY OCCURS 300 TIMES

INDEXED BY SBL-INDEX.
05 SBL-SUBTRANS PIC 999.
05 SBL-OP PIC XXX.
05 SBL-ISQ-PTR PIC 999.
05 SBL-TYPE PIC XX.

88 SBL-TYP2-QUAL VALUE "2E".
88 SBL-RECORD-UNION VALUE "2U".
88 SBL-TYPE3-QUAL VALUE "3 ".

05 SBL-RTNO PIC 9(6).

15.5 Internal Data Requirements

1. Temp-Record-Table

This table is used to temporarily store information about
which record types are mapped to in an INSERT or DELETE
request.

01 TEMP-RECORD-TABLE.

Used to ensure that inserts and deletes properly
handle all data fields on records that an entity
class partially maps to

03 TRT-MAX PIC 999 VALUE 25.
03 TRT-USED PIC 99.
03 TRT-ENTRY OCCURS 25 TIMES

INDEXED
BY TRT-INDEX.

05 TRT-ECNO PIC 9(6).
05 TRT-DBID PIC 9(6).
05 TRT-RTID PIC X(30).
05 TRT-RTNO PIC 9(6).

2. Replication Tables

The following three tables are used to find replicated key
fields that can be used for inter-subtransaction joins.

01 REPL-JOIN-LIST.
Used to add joins taking advantage of key
replication across databases
03 REPL-MAX PIC 99 VALUE 25.
03 REPL-USED PIC 99 VALUE 0.
03 RJ-ENTRY OCCURS 25 TIMES INDEXED BY RJ-INDEX.

05 RJ-DBID PIC 9(5).
05 RJ-RTID PIC X(30).
05 RJ-DFID PIC X(30).
05 RJ-DFNO PIC 9(9).

15-45

DS 620341200
30 September 1990

05 RJ-RTNO PIC 9(9).
05 RJ-TYPE PIC X.
05 RJ-SIZE PIC 999.
05 RJ-ND PIC 99.
05 RJ-PTR-TYPE PIC 9.

88 RJ-ACTION-LIST VALUE 1.
88 RJ-CSQ-L VALUE 2.
88 RJ-CSQ-R VALUE 3.

05 RJ-OK PIC X.
88 OK-FOR-ADDED-JOIN VALUE "Y".
88 NOT-OK-FOR-JOIN VALUE "N".

05 RJ-IS-PTR PIC 99.

01 TEMP-KEY-LIST.

Used to ensure that only whole keys are used in
forming joins using key replication

03 TKL-MAX PIC 999 VALUE 25.
03 TKL-USED PIC 599.
03 TKL-ENTRY OCCURS 25 TIMES

INDEXED BY TKL-INDEX.
05 TK-KCNO PIC 9(6).
05 TK-TAGNO PIC 9(6).
05 TK-REF-FLAG PIC X.

88 TAG-NOT-IN-RJL VALUE "N".
88 TAG-IN-RJL VALUE "Y".

01 KEY-JOIN-LIST.

Used in conjunction with TEMP-KEY-LIST to ensure
that only whole keys are used in forming joins
using key replication

03 KJL-MAX PIC 999 VALUE 25.
03 KJL-USED PIC 99.
03 KJL-ENTRY OCCURS 25 TIMES

INDEXED BY KJL-INDEX.
05 KJ-TK-PTR PIC 99.
05 KJ-RJ-PTR PIC 99.
05 KJ-RJ-OK PIC X.

88 KCNO-IN-RJL VALUE "Y".
88 KCNO-NOT-IN-RJL VALUE "N".

3. Grouping Table

The group table is used to determine which parts of a
request belong in each subtransaction.

01 GROUP-TABLE.
used to identify subtransactions

03 GROUP-IDENTIFIER PIC 9(3).
03 PIVOT-DBID PIC 9(5).
03 PIVOT-RTID PIC X(30).
03 GROUP-MAX PIC 99 VALUE 25.
03 GROUP-USED PIC 99 VALUE 0.
03 GROUP-ROW-SIZE PIC 99 VALUE 31.
03 GROUP-ENTRY OCCURS 25 TIMES INDEXED BY GR-INDEX.

05 GR-RTID PIC X (30).

15-46

DS 620341200
30 September 1990

05 GR-FLAG PIC X.
88 GR-FLAG-ON VALUE "1".
88 GR-FLAG-OFF VALUE "0".

4. Temporary Occurrence Table. This table is used to
identify all the sets of nested repeating data fields that
are required by an NDML statement. It is the source for the
entries that are placed in the OCCURS-TABLE.

01 TEMP-OCCURS-TABLE.
03 TOT-MAX PIC 99 VALUE 25.
03 TOT-STACK-MAX PIC 99 VALUE 25.
03 TOT-USED PIC 99 VALUE 0.
03 TOT-OCCURS-NEST OCCURS 25 TIMES INDEXED BY TOT-INDEX-1.

05 TOT-SUBTRANS PIC 9(6).
05 TOT-DBID PIC 9(6).
05 TOT-RTNO PIC 9(6).
05 TOT-NEST-ID PIC 99.
05 TOT-MAPPED-TO PIC X.
05 TOT-STACK-USED PIC 99.
05 TOT-OCCURS-STACK OCCURS 25 TIMES INDEXED BY

TOT-INDEX-2.
07 TOT-DFNO PIC 9(6).
07 TOT-DFID PIC X(30).
07 TOT-COMP-DFNO PIC 9(6).
07 TOT-DEP-DFNO PIC 9(6).
07 TOT-OCCURS PIC 9(6).
07 TOT-INDEX-DFNO PIC 9(6).

None of these tables is input to or output from this
function.

5. AUCISM-LIST contains the CS to IS mapings for a given tag.

01 AUCISM-LIST.
03 AUCISM-MAX PIC 99 VALUE 20.
03 AUCISM-USED PIC 99 VALUE 0.
03 AUCISM-PRIM-CNT PIC 99.
03 AUCISM-SEC-CNT PIC 99.
03 AUCISM-TAGNO PIC 9(6).
03 AUCISM-ECNO PIC 9(6).
03 AUCISM-ENTRY OCCURS 20 TIMES

INDEXED
BY AUCISM-INDEX.

05 AUCISM-RTNO PIC 9(6)
05 AUCISM-RTID PIC X(30).
05 AUCISM-DBID PIC 9(6).
05 AUCISM-PREF-NO PIC 9(2).
05 AUCISM-MAP-TYPE PIC X(10).

6. ELEMENTARY-DATA-FIELD-TBL
Table to hold elementary record definition variables.

01 EDF-TABLE.
03 EDF-MAX PIC 999 VALUE 256.
03 EDF-USED PIC 999 VALUE 0.
03 EDF-DBID PIC S9(6).
03 EDF-RTID PIC X(30).

15-47

DS 620341200
30 September 1990

03 EDF-RTNO PIC 9(6).
03 EDF-ENTRY OCCURS 256 TIMES

INDEXED
BY EDF-INDEX.

05 EDF-DFID PIC X(30).
05 EDF-DFNO PIC S9(6) COMP.
05 EDF-OCCURS PIC S9(6) COMP.
05 EDF-REDEF-DF-NO PIC S9(6) COMP.
05 EDF-COMPONENT-DF PIC S9(6) COMP.
05 EDF-INDEX-IND PIC X.
05 EDF-KNOWN-TO-DBMS PIC X.
05 EDF-TYPE PIC X.
05 EDF-SIZE PlC 9(3).
05 EDF-ND PIC 9(2).

7. The UEC-TABLE contains the union disciminator fields, the
meta-data, and the union values for entries which
participate in a record union.

01 UEC-TABLE.
05 UEC-MAX PlC 99 VALUE 25.
05 UEC-USED PlC 99 VALUE 0.
05 UEC-ENTRY OCCURS 25 TIMES

INDEXED
BY UEC-INDEX.

07 UEC-DBID PIC 9(6).
07 UEC-RTID PIC X(30).
07 UEC-RTNO PIC 9(6).
07 UEC-DFID PIC X(30).
07 UEC-DFNO PIC 9(6).
07 UEC-TYPE PIC X.
07 UEC-SIZE PIC 9(3).
07 UEC-ND PIC 9(2).
07 UEC-VALUE PIC X(30).
07 UEC-OP PIC X(2).
07 UEC-ECNO PIC 9(6).

.U.S. Government Printing Office: 1992-648-127/62391 15-48

